
Challenges in Developing Desktop Web Apps: a
Study of Stack Overflow and GitHub

Gian Luca Scoccia
DISIM, University of L’Aquila

L’Aquila, Italy
gianluca.scoccia@univaq.it

Patrizio Migliarini
DISIM, University of L’Aquila

L’Aquila, Italy
patrizio.migliarini@graduate.univaq.it

Marco Autili
DISIM, University of L’Aquila

L’Aquila, Italy
marco.autili@univaq.it

Abstract—Software companies have an interest in reaching the
maximum amount of potential customers while, at the same time,
providing a frictionless experience. Desktop web app frameworks
are promising in this respect, allowing developers and companies
to reuse existing code and knowledge of web applications to
create cross-platform apps integrated with native APIs. Despite
their growing popularity, existing challenges in employing these
technologies have not been documented, and it is hard for
individuals and companies to weigh benefits and pros against
drawbacks and cons.

In this paper, we address this issue by investigating the
challenges that developers frequently experience when adopting
desktop web app frameworks. To achieve this goal, we mine
and apply topic modeling techniques to a dataset of 10,822
Stack Overflow posts related to the development of desktop
web applications. Analyzing the resulting topics, we found that:
i) developers often experience issues regarding the build and
deployment processes for multiple platforms; ii) reusing exist-
ing libraries and development tools in the context of desktop
applications is often cumbersome; iii) it is hard to solve issues
that arise when interacting with native APIs. Furthermore, we
confirm our finding by providing evidence that the identified
issues are also present in the issue reports of 453 open-source
applications publicly hosted on GitHub.

Index Terms—Web technologies; Desktop apps; Stack Over-
flow; GitHub; Topic modeling.

I. INTRODUCTION

A current challenge for business enterprises, software com-
panies, and independent developers is to choose the target
platforms for their applications. To reach a greater amount
of users, companies, and developers aim at releasing their
products on the largest manageable amount of platforms. More
targeted platforms directly translate into a larger amount of
potential customers and, thus, increased possible revenue and
increased chances of product success [1].

In this context, similarly to what already happened for
mobile applications [2], web frameworks dedicated to the de-
velopment of desktop applications have recently emerged [3],
[4]. Specifically, these frameworks allow developers to create
a desktop application by providing: (i) a headless web browser
instance that runs the application logic and renders the user
interface; (ii) JavaScript bindings for accessing native OS APIs
from the web-based code. Henceforth, we will refer to desktop
apps built with web frameworks as desktop web apps.

Desktop web app frameworks can potentially simplify ap-
plication development, by enabling reuse of existing code and

skills, while at the same time allowing to target multiple plat-
forms [4]. However, the readiness level of these technologies is
hard to assess as, currently, there is only anecdotal evidence on
how their pros are beneficial and how their cons are impactful
when considering the trade-offs they impose on developers.
In this paper, we conduct an empirical study to precisely
understand the needs and desiderata of desktop web apps
developers. The ultimate aim is to clearly identify challenges
and pain points experienced by developers, as well as possible
aspects that framework maintainers can improve.

Towards this aim, we gather a data set composed of Stack
Overflow posts in addition to a data set of GitHub issues.
On the collected data, (i) we leverage topic modeling to
understand the topics that are being discussed by web app
developers on Stack Overflow and analyze them; (ii) we
confirm our findings by replicating the topic modeling proce-
dure on GitHub, evidencing that the identified challenges are
also present in reported issues, hence also mitigating external
validity risks.

Inspired by the work in [5], we targeted Stack Overflow
and applied topic modeling to its posts since it is the most
active question and answer site for programmers where to
vote, up or down, challenging questions, reported issues,
and provided solutions about the most disparate aspects in
software development [6], [7]. Specifically, we leveraged topic
modeling techniques to identify a number of coherent and
meaningful topics from 10,822 Stack Overflow posts. Then,
we apply quantitative and qualitative analyses to the identified
topics, through both metrics and manual analysis, and employ
different statistical tests. Numbers and dates related to the
posts of interest for our study (reported in Section III-B)
confirm the usefulness of Stack Overflow. Repeating the
process on GitHub, we confirm our findings by providing
evidence that the identified issues are also present in the issue
reports of 453 open-source applications. Indeed, hosting over
4 million repositories [8], GitHub represents a useful source
of information and has previously been used in a plethora of
software engineering studies [9]. The target audience of our
study is composed of desktop app developers and framework
maintainers. Our study provides guidance to the former, as
they can leverage our results to make a more informed decision
when choosing the technologies for their projects. Our study
benefits maintainers, evidencing a number of frameworks’ pain

points, on which they can direct their efforts.
The main findings of our study can be summarized as

follow:
• developers often experience issues regarding the build and

deployment processes for multiple platforms;
• reusing existing libraries and development tools in the

context of desktop applications is often cumbersome;
• it is hard to solve issues that arise when interacting with

native APIs.
In order to allow independent verification and replication

of the performed study, we make publicly available a full
replication package containing the obtained raw data and all
the scripts employed for data preparation and analysis1.

II. WEB FRAMEWORKS FOR DESKTOP APPS

The desktop web app approach comes with multiple ad-
vantages: being contained within the browser, desktop web
apps can be packaged and distributed over any platform
supported by it; the access to native APIs enables the use
of capabilities unavailable to standard web apps, e.g., desktop
notifications, system tray; existing libraries and knowledge of
web developers can potentially be reused for the development
of desktop applications; only a single code base needs to
be maintained, which can be distributed on all platforms,
thus simplifying the development process. On the negative
side, being executed within the browser, desktop web-apps
might incur performance overhead, and JavaScript bindings
are provided for only a subset of all the possible APIs that
exist on each platform.

At the time of writing, two main desktop web app
frameworks exist and are actively maintained: Electron and
NW.js [3]. Electron is an open-source framework developed
by GitHub for building cross-platform desktop applications
with HTML, CSS, and JavaScript. Electron accomplishes this
by combining Chromium and Node.js into a single run-time.
Its development began in 2013, and it was open-sourced
in the Spring of 2014. NW.js (formerly node-webkit) is a
framework for building desktop web apps with HTML, CSS,
and JavaScript. NW.js achieves this purpose by combining
together the WebKit web browser engine and Node.js. It has
originally been created in 2011 by the Intel Open Source
Technology Center. The main difference between the two
frameworks is the way they implement the integration between
the Node.js back-end and the browser front-end: while NW.js
maintains a single state shared between the two, Electron keeps
a separate state for the back-end process and the front-end
app window. Despite this and other small differences, the two
frameworks are comparable in potential and both allow for the
creation of feature-rich applications.

III. STUDY DESIGN

A. Goal and research questions

The goal of the study is to examine what desktop web
apps developers are asking about, with the ultimate purpose

1https://github.com/gianlucascoccia/MSR2021Replication

of identifying challenges and pain points experienced during
development, as well as possible aspects that framework
maintainers can improve.

We refined this goal into the following research questions:
RQ1 What topics related to desktop web app development do

developers ask questions about?
RQ2 Which topics are the most difficult to answer?
RQ3 How prevalent are difficult topics in issue reports of

desktop web app development?
By answering RQ1, we want to identify the aspects of

desktop web app development for which developers frequently
ask for help and, hence, are commonly problematic for them.
RQ2 instead aims to identify the ones that are the most difficult
to answer within the previously detected topics and so can
pose a problem for all but the most experienced developers.
As done in [5], [11], [12], [13], in this paper we use the time it
takes for an answer to be accepted across the different topics
as a possible measurement to estimate difficulty. RQ3 builds
on RQ2 and investigates the presence and proportion of the
identified topics in real-world projects. Topic prevalence is a
possible measurement to estimate the impact that most difficult
topics have on the developments of desktop web apps.

B. Data collection

As illustrated in Figure 1, we started by gathering two main
data sets that will constitute our research basin, composed of
Stack Overflow posts and GitHub issues.

1) Stack Overflow Dataset: For the Stack Overflow dataset,
we leveraged the SOTorrent dataset [14], an open data set
based on the official Stack Overflow data dump. We employed
the latest available version of the dataset, released in Novem-
ber 2020. This data set includes all questions present on Stack
Overflow as of the 8th of September 2020, complete with
their answers and related meta-data (hereafter referred to as
Sso). The meta-data for each question includes the question’s
assigned tags (from one to five), the submission date, its view
count, the question score, its favorite count, and – if present
– the identifier of the answer that was marked as accepted by
its original writer.

In order to make a selection of posts of interest for our
research, we manually analyzed several Stack Overflow posts
related to the Electron and NW.js frameworks. From this
analysis, we defined an initial set of desktop web app related
question tags T0 = <electron, nwjs, nw.js, node-webkit>.
Afterward, we extracted the question set P , composed of
questions in Sso that contain at least one of the tags in T0.
From the latter, we defined T , the set of tags of posts in P .

Using notions from [15], [11] and [13] about significance
and relevance, we calculated the significance heuristic α and
the relevance heuristic β with the following formulas:

α =
of posts with tag t in P

of posts with tag t in Sso

β =
of posts with tag t in P

of posts in P

Pre-processing
data and cleaning

LDA Topic
Modeling using

Mallet
Pre-processing
data and cleaning

Parameterize topic
relevance to weight
timing over difficulty

LDA Topic
Modeling using

Mallet

Which topics are the
most difficult to

answer
Topics classification

and sorting
Extracting accepted

answers timing

Selecting from a user-
submitted list of
apps on official

sites, Electron and
NW.js repositories

Collection of the
GitHub data set Sgh

from github.com

Comparison and
evaluation of

the results

tag-based selection

Selection of the Stack
Overflow data set from

SOTorrent as Sso

Extracting latest
answer timing and
parameterize topic

relevance

Topics classification
and sorting

Selection of Desktop
Web App Frameworks

T0 tag set

Extraction of the of the
P set of Stack Overflow

posts with T0 tags

Refinement of T with α
and β heuristics and

posts selection

Topics
categorizing
and labelling

What topics do
people ask

questions about

RQ2
RQ3

Topics categorizing
and labelling

RQ1

Fig. 1. Study design diagram

The heuristic α measures the relevance of a tag t ∈ T
to desktop web app development, while β measures the
significance of a tag t ∈ T . We consider a tag t to be
significantly relevant if its α and β values are higher than or
equal to predetermined thresholds. Akin to previous work [15],
[13], [11], we experimented with different values for the
thresholds, and we found that the best results are achieved with
α = 0.1 and β = 0.01. Hence, employing the two heuristics,
we refined T by keeping tags that are significantly relevant
to desktop web app development, resulting in a final tag set
T = <node-webkit, nw.js, nedb, electron, electron-packager,
spectron, electron-builder, nwjs, electron-forge>.

Extracting from Sso questions that possess at least one of
the tags in T , we end up with a total number of 10.822
Stack Overflow posts. Demographics of resulting posts are
provided in Table I. Questions with the electron, electron-
packager, spectron, electron-builder, and electron-forge tags
were considered related to the Electron framework, while
questions with the node-webkit, nw.js, and nwjs tags were
considered related to NW.js. Questions with the nedb tag
have been considered for both frameworks, as the tag relates
to a database technology that can be employed with either.
Included Electron questions have a median number of 224
views (372 for NW.js) with a median number of 1 answer
per question (1). The mean number of comments for each
question is 1.43 and 1.35 for Electron and NW.js, respectively.
The oldest Electron question in the dataset was asked in May
2014, while the oldest NW.js question dates back to November
2012. The newest question dates back to March 2020 for both
frameworks. Based on these numbers, we believe that desktop
web apps are sufficiently discussed on Stack Overflow, and
therefore the selected questions can be a useful source of
insights.

2) GitHub Dataset: We leveraged the two lists of user-
submitted apps published on the NW.js and Electron official
website for the collection of our GitHub dataset. Indeed,
both websites provide a list of apps developed with the
corresponding framework to showcase their capabilities and

be used as a reference by developers. The lists are open,
and anyone can freely add his app to the list. We collected
both lists as of the 5th of February 2020, and - employing
ad-hoc scripts - we filtered out apps that do not provide a
link to a working GitHub repository, leaving us with 528
Electron and 66 NW.js apps. As it is common when working
with GitHub repositories, there is a risk of including inactive
or abandoned repositories and incomplete applications in the
dataset [16]. To mitigate this risk, we considered only (i)
repositories containing at least 10 commits and (ii) with a
span of at least 8 weeks between the first and last commit
in the repository. A total of 405 Electron apps and 48 NW.js
apps survived this filtering step. We then collected from each
GitHub repository all available issue reports. An issue report is
a request for improvements, bug fixes, or the addition of new
features [17]. For each issue report, we collected its title, the
full text of all posts on the issue discussion page, its author, the
labels assigned to it, its current status (i.e., open or closed), the
creation date, and the last edit date. The dataset’s repositories
contain 362,223 and 11,559 total commits, made by 7,551
and 321 distinct committers, for Electron and NW.js apps,
respectively. The median number of commits for Electron
(NW.js) apps in our study is 201 (123.5), with a median
number of 4 (4) committers per app, a median number of
114 (93.5) stars for projects, and a median number of 9 (12.5)

TABLE I
DEMOGRAPHICS OF QUESTIONS IN THE STACK OVERFLOW DATASET (SD

= STANDARD DEVIATION, IQR = INTER-QUARTILE RANGE)

Min Max Median Mean SD IQR

Score -8 296 0 1.52 5.88 2
Views 4 130,805 224 1,079.1 3,977.89 666

Answers 0 19 1 0.93 0.94 1
Comments 0 28 0 1.43 2.3 2

Electron

Favorites 0 125 1 1.87 4.06 1

Score -6 151 1 1.56 6.32 2
Views 5 82,022 372 1,095.69 3,804.39 847

Answers 0 11 1 1.07 0.89 0
Comments 0 22 0 1.35 2.16 2

NW.js

Favorites 0 58 1 1.92 3.95 1

watchers per project, respectively. Based on these numbers,
we are reasonably confident that the apps considered in our
study are adequately representative of real-world projects. A
total of 108,379 and 6,331 issue reports were collected from
Electron and NW.js repositories, respectively.

C. Data extraction

In the following, we describe the steps undertaken to
extrapolate from the two datasets the information that we use
to answer the three research questions
Pre-processing – We carried out some pre-processing steps,
to clean up and prepare the collected data for the subsequent
steps. We extract from all the documents of our datasets
(i.e., Stack Overflow posts and GitHub issues) the respective
titles, which we will use for our analysis. Indeed, titles have
been found to be representative of the full document content
and contain lesser noise that can skew the results of our
analysis [5], [18], [19]. Afterward, we perform stopwords
removal, i.e., the process of removing words commonly used
in the English language, such as ‘is’, ‘of’, ‘at’ which do not
significantly affect the semantics of a sentence and can poten-
tially introduce noise. We leverage the NLTK stopwords [20]
list for this operation. Subsequently, we perform stemming,
the process of reducing inflected or derived words to their
root form, and lemmatization, a process that reduces a word
to its canonical form named lemma taking into consideration
the linguistic context of the term (e.g., the word ‘good’ is the
lemma of the word ‘better’).
Topics identification – To identify topics present in our
datasets, we resort to topic modeling using the Latent Dirichlet
Allocation (LDA) [21] algorithm, widely used in software
engineering studies [22]. LDA is based on the idea that a
“topic” consists of a cluster of words that frequently occur
together in documents. LDA provides as output a series of
probabilities for each document, representing the likelihood
of a post being related to each of the identified topics. For
our study, we employ the Mallet tool [23] implementation
of LDA. LDA requires an input parameter K, representing
the number of topics to search for. Determining the optimal
K value is crucial for the analysis’ results, as if its value
is too small or too high, the algorithm might return topics
that are respectively too narrow or too broad to yield any
useful conclusions from. To overcome this challenge, we rely
on the topics coherence. The coherence is one of the metrics
commonly used to evaluate topic models and has been found
to be highly correlated with human understandability [24].
For this purpose, we experiment with different values of K,
ranging from 10 to 50 in increments of 5 and compute the
mean coherence metric across all output topics. Selecting
the K value with better coherence, we repeat the process in
increments of 1 for values in the range [K − 5;K + 5] and
take note of the three values that provide the best results. We
then pick the final value for K either by selecting the candidate
value with the best coherence metric or, in cases were multiple
values had similar scores, manually examining a sample of 50
documents for each candidate value. This procedure is similar

to the one employed in [5] but it considers a wider starting
range for possible values of K.

Naming topics – For the purposes of our analysis, it is
necessary to understand the rationale that unites the docu-
ments in each topic identified by the LDA algorithm and
to summarize it with a descriptive name. This step was
performed by the first author, who has experience in JavaScript
development. Subsequently, assigned topic names were revised
and confirmed by the other two authors. To assign the topic
names, the first author relied on the list of the top 20 words
most frequently occurring in each topic, computed by the
Mallet tool, and, when necessary, manually inspecting the 25
most relevant documents for a topic (i.e., the ones with the
greater probability of belonging to the topic).

Calculating difficulty – We decided to take into account the
relevancy of a GitHub issue GHi or a Stack Overflow question
SOq to the selected topic t generated by LDA modeling
while calculating its difficulty D. Thus, we parameterized the
LDA probability P in the question/issue difficulty. As done
in [5], [11], [12], [13], we calculate the difficulty subtracting
question/issue Submit Timestamp (ST) from question Accep-
tance Timestamp (AT) for Stack Overflow and issue Closing
Timestamp (CT) for GitHub as follows:

D(SOqt) = (ATSOq − STSOq) ∗ P (SOqt)

D(GHit) = (CTGHi − STGHi) ∗ P (SOqt)

In other words, the D(SOqt) formula weights the difficulty
of a question over its relevancy to a topic t. Indeed, a Stack
Overflow question may include aspects related to multiple
topics, e.g., a bug that manifests itself only on some platforms
is to be considered related to both the Errors and the Platform
compatibility topics. Hence, to take into account this multi-
faceted nature of questions, in our analysis, we compute
multiple D(SOqt) values for each question, each instantiated
over a different topic. Analogous considerations are valid for
the D(GHit) formula.

D. Data analysis

To answer RQ1, we perform a qualitative analysis of the
results of the topic modeling process. For each identified
topic, we manually examine the top words produced for it
by the LDA algorithm and a number of the most relevant
questions encompassed by it. In this way we understand the
shared rationale for the questions related to the topic and derive
further insights.

To provide an answer to RQ2, we analyze collected data
quantitatively. First, for each topic, we investigate the normal-
ity of the D(SOqt) distribution by employing the Anderson-
Darling test [25], where the null hypothesis is that the data
comes from a normal distribution. As we could always re-
ject the null hypothesis, we adopt the omnibus Friedman
test [26] to statistically determine if the weighted answer time
for documents across identified topics exhibits a significant
difference. The Friedman test is a non-parametric test for
one-way repeated measures analysis of variance by ranks.

We use the Friedman test because collected data does not
adhere to the assumptions of the ANOVA statistical test and
the Friedman test is a non-parametric alternative that does not
assume independence of observations [26]. We execute post-
hoc analysis performing pairwise comparisons among each
pair of topics employing Nemenyi’s test [27]. The latter is
a conservative test that accounts for family-wise errors, thus
not requiring correction for obtained p-values [28].

To answer RQ3, we employ the LDA algorithm and the
aforementioned tests (Anderson-Darling, Friedman, and Ne-
menyi) analogously to how these have been utilized to answer
RQ1 and RQ2.

IV. DISCUSSION ON FINDINGS

In this section, we list and discuss the results obtained from
our analysis, broken down per research question.

A. RQ1: What topics related to desktop web app development
do developers ask questions about?

Following the steps described in Section III-C, we obtained
the best results for the LDA algorithm on the Stack Overflow
dataset employing K = 14 topics. After reviewing the au-
tomatically generated topics, we manually merged a pair of
semantically similar ones, leaving us with a final total of 13
topics. The resulting topics are displayed in Table II, alongside
a selection of the top words for each topic, picked from
the top 20 words automatically produced by the Mallet tool.
Obtained topics are heterogeneous, covering several aspects
(e.g., app architecture, tools, and the user interface) and
phases of application development (e.g., design, testing, and
deployment).

1) Topics overview: in the following, we describe and
discuss the emerged topics in detail, making use of examples
selected from the Stack Overflow questions that compose
each topic. For reasons of space, in the following, we focus
exclusively on the most relevant topics, while discussion and
examples of the others can be found in the online appendix
included in the replication package1.

App architecture: questions in this topic discuss the funda-
mental logical structure of the desktop application in terms
of, e.g., routes, views, and components. An example of this
kind of questions is “AngularJS $routerProvider not working
properly in node-webkit”, in which one developer asks for help
in configuring the AngularJS router included in his applica-
tion. Noticeably, the names of several JavaScript frameworks
appear among the top words of this topic (as can be seen in
Table II). Indeed, during JavaScript application development,
it is common practice to adopt such frameworks to properly
structure the application architecture when the logic becomes
more extensive and difficult to maintain [29].

• Desktop web application development requires the
usage of abstractions and frameworks to properly man-
age the application’s logical structure when dealing with
growing application complexity.

Build & deploy: this topic comprises questions about the
build process of desktop web apps, whose ultimate goal is
to create build artifacts that can be distributed and executed
on multiple platforms. An instance of this type of question
is “What are some mechanisms to package cross-platform
Electron apps in a single build?”. The presence of this topic
among the most discussed ones is, at a first glance, contrasting
with one of the main touted strengths of desktop web app
frameworks: the possibility of developing an application in a
single language while still being able to easily distribute it
on multiple platforms [3]. To investigate the matter more in-
depth, we decided to conduct a manual analysis of questions
relevant to this topic. From it, we noted that indeed developers
require clarifications on these subjects even though desktop
web app frameworks are designed to simplify deployment on
multiple platforms due to the fact that developers often have
specific requirements for the deployment of their applications
on some platforms (e.g., “How to deploy an Electron app
as an executable or installable in Windows”) or necessitate to
include native libraries in their product and thus have to follow
more elaborate build processes (e.g., “Unable to load some
native node js modules with electron 4.0.6 on Windows”).

• Despite frameworks’ efforts to simplify deployment
across multiple platforms, developers often ask for help
regarding the build and deploy processes.

Client-server: this topic groups questions asking for clarifi-
cation regarding interactions between the desktop web app
and a remote server. For instance, in the post “Electron:
socket.io can receive but not emit” a developer states that
he is “creating an Electron application that uses Socket.io
to communicate to a server application” and asks for help in
troubleshooting issues that arise when forwarding messages
from one of the clients to the server. The presence of this
topic reveals that desktop web apps are often not developed
in isolation but serve as an (additional) client-side interface for
existing applications and services. This is in line with one of
the main advantages offered by desktop web app frameworks,
namely the possibility of reusing the already possessed web
development skills to develop desktop applications.

• Desktop web applications are often developed as an
additional front-end client for existing applications and
services.

Dependencies: this topic collects questions dealing with issues
related to the inclusion of libraries or other software dependen-
cies. An example is the post “Requiring node modules in ionic
+ electron (5.0.0) desktop application”. The ability to reuse
existing web development libraries for desktop applications
is advertised as one of the major strengths of desktop web
app frameworks [3]. Hence, we deemed it appropriate to
investigate the reasons behind the presence of this topic
among the most discussed on Stack Overflow. Conducting
a manual analysis of related questions, we identified two
main reasons: firstly, as specified in the official Electron

TABLE II
TOPICS IN THE STACK OVERFLOW DATASET

(TOPICS IN ITALIC ARE IN COMMON WITH THE GITHUB DATASET)

Topic Top words
Median
D(SOqt)
(minutes)

σ(D(SOqt))
(minutes)

App architecture react angular component function
vue data change callback 16.39 16,847.37

Build & deploy
build packag creat electron-build

electron-packag webpack exe
bundl

21.32 29,934.15

Client-server server request node.js client proxy
connect express response 9.87 27,695.19

Databases data nedb databas store sqlite set
valu updat 8.89 14,033.18

Dependencies modul requir node import nativ
defin typescript angular 17.9 26,887.64

Errors
undefined error typeerror

javascript uncaught empty null
result

5.53 9,301.1

File
manipulation

file save imag local download
path open read 20.67 21,746.9

Inter-process
communication

process render main window child
ipc send communic 8.38 9,669.71

Developer tools code variable javascript global
function object source debug 6.42 12,103.8

Page contents load page dom html webview
script element tag 16.44 20,989.03

Platform
integration

chrome print detect device
memory screen shell python 20.31 23,279.03

Testing test spectron run selenium
browser working testing chrome 10.2 14,401.30

User interface window show menu click browser
screen close button 22.88 37,399.92

faq2, the way these frameworks integrate the node.js backend
and the frontend browser instance can result in compatibility
issues when employing some popular libraries (e.g., JQuery
or AngularJS), which require additional setup steps to be
correctly integrated; secondly, it is common practice in the
JavaScript ecosystem to use dependency managers, i.e., soft-
ware libraries that assist in the integration of multiple external
libraries. Integrating these within desktop web apps is not
always straightforward. In both cases, solving these issues
requires manually tweaking configuration files of libraries,
frameworks, or underlying components (e.g., configuration
files of the node.js backend server). Required edits are mostly
specific for each library, hence deep knowledge of the involved
technologies is necessary. For instance, the answer to the
question “Error: Can’t resolve ’electron-is-dev’ in electron &
typescript & webpack project” reports the need to configure
the webpack.config.js file in order to integrate Electron
with the Webpack module bundler.

• Reuse of traditional web development libraries within
desktop web apps is common, but their integration is not
always straightforward.

Developer tools: these are questions asking for explanations
on how to use existing development tools, such as code
editors and debuggers, in the context of desktop web apps. An
example is the Stack Overflow post “How to debug Quasar
Electron App with VS Code”. Similarly to what has been

2https://www.electronjs.org/docs/faq

observed for the Dependencies topic, by manually analyzing
questions related to the topic, we found that some of the tools
commonly used by developers (e.g., IDEs, debuggers) require
additional configuration steps or workarounds to be used for
desktop web app development. One example is in the answer
to the question ‘Debug typescript electron program in vscode”
in which, to enable the usage of the IDE built-in debugger
within the Electron application, the necessary edits to multiple
IDE and build process configuration files are described.

• Some commonly adopted developer tools (e.g., debug-
gers, IDEs) cannot be used out-of-the-box for desktop
web application development.

Platform integration: this topic aggregates those questions
in which the developer asks how to invoke native APIs (e.g.,
“node-server-screenshot not working on live ubuntu server”)
or how to interact with hardware peripherals (e.g., “Accessing
USB devices from node-webkit?”). This topic is of primary
importance, given that integration with the underlying platform
is one of the main advantages offered by desktop web app
frameworks. Manual exploration of related questions reveals
that developers often face difficulties when their application
needs to support multiple platforms, as not all APIs and
behaviors are standardized across platforms. One example is
given in the “ELECTRON: image file(.png) silent printing
on Ubuntu” Stak Overflow post, where the accepted answer
points out the need to employ two different APIs to implement
printing of documents on Windows and Ubuntu. Moreover, de-
velopers often experience difficulty in integrating the required
software libraries to bridge between the web application and
the underlying platform. This stems from the fact that existing
Node.js native modules cannot be used as-is but needs to
be recompiled before usage, as desktop web app frameworks
employ a different application binary interface34.

• Developers face difficulties when supporting multiple
platforms due to: (i) inconsistent APIs across platforms
and (ii) difficulties in integrating native modules into the
desktop web application.

Testing: these posts discuss aspects related to application
testing, often seeking clarification regarding test frameworks
and tools. “Mocha test setup to run two tests who re-
quire same beforeEach setup” is an example. Analyzing
the questions of this topic, we noticed that the main rea-
son why developers experience testing-related difficulties
is that commonly used testing frameworks and tools are
often not compatible with desktop web app frameworks.
Instead, ad-hoc tools or wrappers for existing ones must
be utilized in their place. Multiple examples are found
in Stack Overflow questions: packages such as spectron,
electron-chromedriver and nw-chromedriver provide
wrappers for the popular ChromeDriver automated testing
tool; whereas, nw-test-runner and electron-mocha wrap

3https://www.electronjs.org/docs/tutorial/using-native-node-modules
4https://www.npmjs.com/package/nw-gyp

around the Mocha testing framework.

• Ad-hoc wrappers are required to make existing testing
frameworks and tools usable for desktop web application
development.

2) Additional considerations: in the following, we provide
some additional considerations on the presented results.

Reuse is possible but cumbersome – A common thread that
binds several of the topics described above is the difficulty that
developers encounter in reusing familiar technologies in the
context of desktop web apps: libraries and testing frameworks
frequently require workarounds or ad-hoc solutions to be
employed, while tool support is lagging. This is a direct
consequence of the technical solutions employed by current
desktop frameworks to enable communication between the
node.js back-end and the front-end browser window but also
suggests that library and tool developers do not consider
desktop web apps a potential target for their products. In other
words:

• Despite their growing popularity, desktop web apps are
still unaccounted for by many libraries, frameworks, and
tools hence complicating their adoption alongside familiar
technologies.

Skills required to develop desktop web apps – Another
important aspect to consider is the possibility for developers
to reuse, in addition to libraries and tools, skills already
possessed for the development of desktop applications. From
this point of view, analyzing the list of topics identified, we can
indeed identify topics that encompass skills in common with
traditional web development, such as Page contents, Client-
server and Databases. However, we can also point out some
topics that relate to skills less commonly used in traditional
web development (i.e., File manipulation and Inter-process
communication) in addition to others that are exclusive to
desktop applications, as in the case of Build & deploy and
Platform integration. Therefore, we recommend developers
interested in using desktop web app frameworks to deepen
their knowledge of these aspects.

• In addition to traditional web development skills, devel-
opers interested in desktop web applications should study
in deep aspects such as File manipulation, JavaScript
Inter-process communication, Build & deploy processes
and APIs for Platform integration.

Evolution of desktop web app questions – In addition to
the qualitative considerations previously provided, we have
analyzed quantitatively the evolution of questions related to
desktop web app frameworks over the years, displayed in
Figure 2. Questions were plotted on the graph according to
their creation date and divided into Electron- and NW.js-
related questions on the basis of the tags assigned with the
same procedure used in Section III-B1.

Examining the plot, we can observe that the combined
number of questions is increasing over the years, likely due

to a growing interest in desktop web app frameworks. More
in detail, we can notice that starting from the second half
of 2015, the number of questions related to Electron has
continued to grow while the number of questions related to
NW.js has slowly declined, widening the gap between the two
frameworks. This highlights that, to date, Electron is by far the
most popular among the two frameworks, even though NW.js
maintains a presence within the developer community. We
hypothesize that some peculiarities probably made Electron
gain more popularity over the years: Electron does not require
Chromium customization, it does not introduce a new JS
context in pages, it receives latest security updates, it has a
bigger community, more in-production apps using it, and more
userland modules available in npm [10]. In addition, we can
observe a spike in the number of monthly questions happening
at the beginning of 2019, although future work is required to
identify the reasons behind it.

• The number of monthly Stack Overflow questions
discussing desktop web app development is experiencing
a growing trend, mostly driven by an increasing interest
in the Electron framework.

B. RQ2: Which topics are the most difficult to answer?

To identify the most difficult topics, we used the D(SOqt)
measure, previously defined in Section III-D. Figure 3 provides
a logarithmic scale boxplot of the D(SOqt) for each topic
identified in the previous research question, while median and
standard deviation values are reported in Table II. We can no-
tice that the median D(SOqt) ranges from a minimum of 5.53
minutes for the topic Errors to a maximum of 22.8 minutes
for the topic User interface. However, the standard deviation is
very large for each topic (≈15.5 hours minimum and 26 days
maximum) signifying that, within each topic, the time taken
to answer questions is very spread. Additionally, we observed
small differences in value for the first quartile over the topics
distributions (minimum ≈30 seconds, maximum ≈2 minutes)
but large differences for the third quartile (minimum ≈40

2013 2014 2015 2016 2017 2018 2019 2020
Year

0

50

100

150

200

250

300

M

on
th

ly
 q

ue
st

io
ns

NW.js
Electron
Combined

Fig. 2. Evolution of desktop web app questions on Stack Overflow over time

U
se

r
in

te
rf

ac
e

B
ui

ld
 &

de
pl

oy
P

la
tfo

rm
in

te
gr

at
io

n
F

ile
m

an
ip

ul
at

io
n

D
ep

en
de

nc
ie

s

P
ag

e
co

nt
en

ts
A

pp

ar
ch

ite
ct

ur
e

Te
st

in
g

C
lie

nt
−

se
rv

er

D
at

ab
as

es

In
te

r−
pr

oc
es

s
co

m
m

un
ic

at
io

n
D

ev
el

op
er

to
ol

s

E
rr

or
s

1 m

10 m

1 h

6 h
1 d

1 w
1 m
3 m
1 y
3 y

D
iff

ic
ul

ty

Topic

Fig. 3. Boxplot of D(SOqt) (difficulty of Stack Overflow topics)

minutes, maximum ≈4 hours), suggesting that the differences
are more significant in the upper half of the distributions.

Differences in descriptive statistics suggest that the distribu-
tion of answer times differs across topics. We statistically test
this hypothesis by applying the Friedman omnibus test. The
result (p−value < 0.01) allows us to reject the null hypothesis
that distributions of D(SOqt) across topics are not statistically
significantly different. Subsequently, as post-hoc analysis, we
tested the hypothesis that each topic has a statistically signif-
icantly greater distribution than the others. For this purpose,
we performed pairwise comparisons in a round-robin fashion,
employing the one-tailed Nemenyi’s test. Based on the number
of comparisons for which we were able to reject the null
hypothesis, we sorted the topics according to their difficulty,
obtaining the ranking shown in Figure 3. In all comparisons
for which we were able to reject the null hypothesis (i.e.,
that the pivot topic distribution is not statistically significantly
greater), we always obtained a p−value < 0.01.

From the obtained sorting, we notice that the most challeng-
ing topic (i.e., the one with a greater median D(SOqt)) is User
interface. This highlights a pain point in using desktop web
app frameworks and therefore we recommend their developers
to pay attention to the ease-of-use of APIs and mechanisms
for the management of the user interface. Afterward, in order
of difficulty, we find the topics Build & deploy and Platform
integration, thus suggesting that integration and distribution
on multiple platforms are problematic for developers. To
these follow the topics File manipulation and Dependecies,
confirming the criticalities discussed in the previous research
question. Looking at the easier topics we find instead Inter-
process communication, Developer tools and Errors signifying
that for these aspects developers’ queries are more rapidly
solved, suggesting a minor impact on development times.

• User interface, Build & deploy, and Platform integra-
tion are the most difficult topics. Inter-process communi-
cation, Developer tools and Errors instead are the ones
answered more rapidly.

C. RQ3: How prevalent are difficult topics in issue reports of
desktop web app development?

To answer this question, we search for topics identified in
RQ1 inside the GitHub dataset. For it, we obtained the best
results for the LDA algorithm employing K = 13 topics. Also
in this case, we merged a pair of automatically produced topics
that were found to be semantically similar during the manual
review. The resulting 12 topics are displayed in Table III,
together with a selection of words for each topic selected from
the top 20 words automatically produced by the Mallet tool.
Due to space considerations, we omit the detailed discussion
of each individual topic, available in the online appendix1.

1) Topics overview: as in the case of Stack Overflow,
obtained topics are reasonably heterogeneous. However, dif-
ferently from it, we can note the presence of some topics more
loosely connected to software engineering. We believe this is
due to the fact that i) in the GitHub dataset there are multiple
applications with functionalities closely related to these topics
(e.g., messaging apps or cryptocurrency wallets); ii) it is well
known that GitHub issues are oftentimes used to discuss topics
not related to software maintenance [30].

We report that 6 out of 12 identified topics (i.e., Build
& deploy, Errors, File manipulation, Platform integration,
Testing and User interface) are also present in the Stack
Overflow dataset, providing an evidence that the problems
associated with these topics are frequently encountered during
desktop web app development.

• The topics Build & deploy, Errors, File manipulation,
Platform integration, Testing, and User interface are
frequently found in issue reports of real-world GitHub
applications.

2) Statistical analysis: Table III reports the median and
standard deviation of the D(GHit) measure for each topic
identified in the GitHub dataset. We can observe that Feature
request is the topic with the maximum median value (≈3
days) while, also in this case, Errors is the topic with the
minimum median (≈10 hours). Again, the observed standard
deviation is very large for each topic (minimum 2 months and
a half, maximum ≈5 months), signifying that the D(GHit)
distributions are rather spread. As for Stack Overflow topics,
we observed greater differences in values for the third quartile
(minimum ≈2 days, maximum ≈2 weeks) with respect to the
first quartile (minimum ≈30 minutes, maximum ≈4 hours),
suggesting that the differences are more significant in the
upper half of the distributions.

Similarly to Section IV-B, we employ the Friedman test
to verify the presence of statistically significant differences
across distributions. The result (p−value < 0.01) allows us to
reject the null hypothesis that distributions of D(GHit) across
topics are not statistically significantly different. Analogously
to Section IV-B, we use Nemenyi’s test to perform all possible
pairwise comparisons and order the topics based on their alive
time. Also in this case we obtain a p−value < 0.01 in all

comparisons for which we can reject the null hypothesis and
the resulting ranking is displayed in Figure 4. We observe
that the Feature request topic is the one that exhibits a longer
median alive time. We hypothesize that the underlying reason
is that this kind of topic is the only one that does not directly
point to a bug, suggesting instead the addition or improvement
of features, hence resulting in longer discussions. Platform
integration follows, highlighting that indeed compatibility
issues generally require a longer time to be addressed, hence
significantly impacting development. The opposite instead can
be stated for the topic Errors, which is the last in the ranking.

3) Stack Overflow and GitHub comparison: comparing the
topics rankings among the two datasets, we observe the pres-
ence of the Platform integration topic among the top positions
of both datasets, as it is the third most challenging topic to
answer and the second in terms of time required to address
related issues on GitHub. Instead, Build & deploy and User
interface, the other two most challenging to answer topics,
occupy a lower position in the GitHub ranking, evidencing
that issues of this kind require a minor development effort to
be fixed. Analogously, we observe that the topic Errors instead
places at the bottom of both datasets’ rankings.

• Platform integration is one of the most critical aspects,
being the third most difficult topics to answer and the
second in terms of time required to address related issues.

More in general, we observe that the topics obtained by
applying LDA on GitHub issues deal with more diversified as-
pects and are more loosely related to application development.
Nonetheless, we believe that GitHub can represent a useful

TABLE III
TOPICS IN THE GITHUB DATASET

(TOPICS IN ITALIC ARE IN COMMON WITH THE STACK OVERFLOW
DATASET)

Topic Top words
Median
D(GHit)
(minutes)

σ(D(GHit))
(minutes)

Account account user password login updat
key chang creat 2,497.94 121,733.1

Build & deploy instal packag build fail updat
version linux releas 1,741.12 204,860.7

Cryptocurrencies wallet sync connect mist ethereum
contract eth ether 980.25 108,640.5

Errors error uncaught read properti
typeerror undefin enoent null 573.63 189,899

Feature
request

request featur add support option
suggestion disabl abil 4,236.85 150,930.4

File
manipulation

file open folder save chang
directori path drag 2,008.07 225,687.8

Input shortcut search keyboard key tab
select click input 1,622.91 196,381.5

Messaging room messag user show invit list
group chat 2,216.92 113,726

Platform
integration

window icon start linux mac maco
app crash 2,924.64 188,831.1

Testing test error cypress run fail log
browser chrome 2,083.38 147,853.8

Text
manipulation

line code highlight text markdown
render syntax charact 1,578.20 211,404.9

User interface window bar theme scroll dark
menu mode size 2,027.98 184,187

F
ea

tu
re

re
qu

es
t

P
la

tfo
rm

in
te

gr
at

io
n

A
cc

ou
nt

M
es

sa
gi

ng F
ile

m
an

ip
ul

at
io

n

Te
st

in
g

U
se

r
in

te
rf

ac
e

B
ui

ld
 &

de
pl

oy

In
pu

t

Te
xt

m
an

ip
ul

at
io

n

C
ry

pt
oc

ur
re

nc
ie

s

E
rr

or
s

1 m

10 m

1 h

6 h
1 d

1 w
1 m
3 m
1 y
3 y

D
iff

ic
ul

ty

Topic

Fig. 4. Boxplot of D(GHit) (difficulty of GitHub topics)

source for the collection of additional data, as in the case of
our study, or to investigate more varied aspects of the software
development cycle. In addition, we observe a different order
of magnitude in the distributions of D(SOqt) and D(GHit)
with the former showing a median closing time on the order
of minutes and the latter on the order of days. We think this
gap is not surprising, given that Stack Overflow posts enjoy
much greater visibility than GitHub issues, but it suggests
that, except for very specific project-related issues, developers
should rely on the former to receive assistance more promptly.

V. LIMITATIONS AND THREATS TO VALIDITY

In the following, we discuss the threats to the validity of our
study according to the Cook and Campbell categorization [31].

Internal Validity: refers to the causality relationship be-
tween treatment and outcome [32]. We relied on Stack Over-
flow tags to identify posts related to desktop web apps devel-
opment. As such, there is the possibility that some posts might
have been missed during our posts selection, due to being mis-
labeled. To mitigate this threat, we performed the selection of
the posts employing the significance and relevance measures,
described in Section III-B1. Previous studies have found these
measures to be effective in expanding the tags dataset and in
limiting dataset noise [5], [33], [13], [11], [12], [15]. Another
potential threat resides in the selection of the optimal number
of topics K (14 for Stack Overflow, 13 in the case of GitHub),
which potentially might have been sub-optimal, leading to
the identification of topics that are too narrow or too general
to extract meaningful insights from. We mitigated this threat
by experimenting with different configurations and selecting
the one that maximizes the generalizability and relevance of
the topics based on the coherence measure [24]. Akin to the
previous threat, the adopted procedure has been employed in
previous studies that found it effective [5], [33].

Construct Validity: deals with the relation between theory
and observation [32]. A potential threat comes from the

labeling of the automatically generated topics, as the assigned
names might not reflect the posts associated with the topics.
We mitigate this threat by having the naming performed by
one of the authors who possess experience in JavaScript devel-
opment. During the naming procedure, in addition to relying
on automatically produced top words, he manually sampled
and analyzed a number of the most relevant documents for
each topic. Assigned names were then reviewed and confirmed
by a second author. Moreover, top words and examples for
each topic are reported in the paper, to help the reader assess
the relevance of assigned topic names. Additionally, we use
the D(SOqt) and D(GHit) metrics to measure the difficulty
of identified topics, which might be a threat to construct
validity, as these metrics might reflect more the (lack of)
priority of a task rather than the difficulty of it. These metrics
are a generalization of well-known ones used in other topic
modeling studies [15], [11], [12], [13].

External Validity: deals with the generalizability of ob-
tained results [32]. In our study, we mainly relied on data
collected from Stack Overflow to identify the issues faced by
developers of desktop web apps. However, this data might not
be comprehensive of all the difficulties faced by developers, as
there might be more subtle aspects that are rarely discussed.
To mitigate this threat, we also investigated the prevalence of
identified issues in real-world applications hosted on GitHub,
identifying other aspects that are commonly discussed in them
and evidencing that a number of previously identified issues
are commonly discussed in GitHub issue reports. Moreover,
in the analysis of GitHub issues, the adopted dataset consists
mainly of Electron applications, with only a minority of NW.js
apps. As such, there is the possibility that the obtained results
are more pertinent to Electron itself, rather than to desktop
web apps in general.

VI. RELATED WORK

In this section, we present the studies related to desktop
web application development and discuss the work that applied
topic modeling techniques to Stack Overflow data to elicit
insights pertaining to the developer perspectives.

A. Desktop web apps

To the best of our knowledge, our previous work [4] is the
only study, in the literature, that directly dealt with the topic
of desktop web apps. In it, we conducted an investigation
to characterize their usage and found preliminary evidence
on some of the disadvantages associated with them. On a
broader scope, the idea of employing the browser as a platform
for the execution of cross-platform applications is not novel.
In 2008, Taivalsaari and colleagues reported their experience
in using a regular web browser as a platform for desktop
applications [34]. In a subsequent work [35], the same authors,
discuss the ever-narrowing boundary between the web and
desktop applications. In the mobile domain, hybrid develop-
ment frameworks allow developers to use web technologies for
the development of their mobile applications. Malavolta et al.
investigated the traits and the presence of hybrid mobile apps

on the Google Play store [29]. In follow-up research, they
focused on the differences perceived by end-users between
hybrid and native mobile apps [36].

B. Topic modeling studies on Stack Overflow

There is a number of studies that applied topic modeling
techniques to Stack Overflow data to extrapolate a variety
of insights. Baruaet al. [37] were the first to investigate the
general topics that the developer community discusses on
Stack Overflow. In the mobile domain, Linares-Vasquez and
colleagues [38] investigated the varied challenges that devel-
opers face when developing mobile applications while Rosen
and Shihab [12] investigated the specific issues that arise on
different mobile platforms. Other studies investigated needs
and challenges of developers in multiple contexts: software
security (Yang et al. [13]), machine learning (Alshangiti et
al. [39] and Bangash et al. [40]), big data (Bagherzadeh et
al. [11]), virtualization (Haque et al. [41]), blockchain (Wan et
al. [33]), microservices (Bandeira et al. [42]), concurrency
(Ahmed et al. [15]), usage of biometric APIs (Jin et al. [43]),
and chatbot development (Adbellatif et al. [5]). More closely
related to our work, Venkatesh et al. [44] investigate the
challenges that web developers experience when using Web
APIs and Bajaj et al. [45] investigated the common challenges
faced by web developers. To the best of our knowledge, there
is no study that explored the challenges faced by desktop web
app developers on Stack Overflow. We believe that our study
will be helpful to practitioners to understand the difficulties
tied to the adoption of these technologies and to framework
developers to improve them.

VII. CONCLUSIONS AND FUTURE WORK

We conducted an empirical study on 10,822 Stack Overflow
posts related to the development of desktop web applications
and issue reports of 453 open-source applications publicly
available on GitHub. Results of our analysis evidence the
presence of several issues related to the build and deployment
processes for multiple platforms, reuse of existing libraries and
tools, and interaction with native APIs.

As future work, we plan on investigating other aspects
unexplored in this study that might represent other potential
criticalities of desktop web app frameworks: being executed
within a web browser, apps may suffer performance degra-
dation and excessive energy consumption, especially if not
properly optimized. Moreover, focusing on the GitHub dataset,
we plan on analyzing the code of issue-fixing commits to
understand and characterize how the problems evidenced in
our study were solved.

REFERENCES

[1] H.-B. Kittlaus and P. N. Clough, Software product management and
pricing: Key success factors for software organizations. Springer
Science & Business Media, 2008.

[2] I. Malavolta, “Beyond native apps: web technologies to the res-
cue!(keynote),” in Proceedings of the 1st International Workshop on
Mobile Development, 2016, pp. 1–2.

[3] P. B. Jensen, Cross-platform Desktop Applications: Using Node, Elec-
tron, and NW. js. Manning Publications Co., 2017.

[4] G. L. Scoccia and M. Autili, “Web frameworks for desktop apps: An
exploratory study,” in Proceedings of the 14th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), ser. ESEM’20. ACM, 2020.

[5] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab,
“Challenges in chatbot development: A study of stack overflow posts,”
in Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 174–185.

[6] R. Abdalkareem, E. Shihab, and J. Rilling, “What do developers use the
crowd for? a study using stack overflow,” IEEE Software, vol. 34, no. 2,
pp. 53–60, 2017.

[7] Stack Overflow, “Stack Overflow Developer Survey 2019,” https://
insights.stackoverflow.com/survey/2019, Accessed 07 January 2021.

[8] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in 2012 9th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 2012, pp. 12–21.

[9] V. Cosentino, J. L. C. Izquierdo, and J. Cabot, “A systematic mapping
study of software development with github,” IEEE Access, vol. 5, pp.
7173–7192, 2017.

[10] dsanders11. Technical differences between electron and nw.js.
[Online]. Available: https://github.com/electron/electron/blob/master/
docs/development/electron-vs-nwjs.md

[11] M. Bagherzadeh and R. Khatchadourian, “Going big: a large-scale study
on what big data developers ask,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 432–
442.

[12] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, 2016.

[13] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? a large-scale study of stack overflow posts,”
Journal of Computer Science and Technology, vol. 31, no. 5, pp. 910–
924, 2016.

[14] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “Sotorrent: reconstructing
and analyzing the evolution of stack overflow posts,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, A. Zaidman,
Y. Kamei, and E. Hill, Eds. ACM, 2018, pp. 319–330. [Online].
Available: https://doi.org/10.1145/3196398.3196430

[15] S. Ahmed and M. Bagherzadeh, “What do concurrency developers ask
about? a large-scale study using stack overflow,” in Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, 2018, pp. 1–10.

[16] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071,
2016.

[17] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillere, J. Klein, and Y. Le Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE). IEEE, 2013, pp. 188–197.

[18] G. Chen, C. Chen, Z. Xing, and B. Xu, “Learning a dual-language
vector space for domain-specific cross-lingual question retrieval,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 744–755.

[19] B. Xu, Z. Xing, X. Xia, and D. Lo, “Answerbot: Automated generation
of answer summary to developers’ technical questions,” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2017, pp. 706–716.

[20] E. Loper and S. Bird, “Nltk: the natural language toolkit,” arXiv preprint
cs/0205028, 2002.

[21] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[22] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao,
“Latent dirichlet allocation (lda) and topic modeling: models, applica-
tions, a survey,” Multimedia Tools and Applications, vol. 78, no. 11, pp.
15 169–15 211, 2019.

[23] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
http://mallet. cs. umass. edu, 2002.

[24] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the eighth ACM international
conference on Web search and data mining, 2015, pp. 399–408.

[25] M. A. Stephens, “Edf statistics for goodness of fit and some compar-
isons,” Journal of the American statistical Association, vol. 69, no. 347,
pp. 730–737, 1974.

[26] W. Daniel, Applied Nonparametric Statistics, ser. Duxbury advanced
series in statistics and decision sciences. PWS-KENT Pub., 1990. [On-
line]. Available: https://books.google.it/books?id=0hPvAAAAMAAJ

[27] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013, vol. 751.

[28] P. Nemenyi, “Distribution-free multiple comparisons,” in Biometrics,
vol. 18, no. 2. International Biometric Soc 1441 I ST, NW, SUITE
700, WASHINGTON, DC 20005-2210, 1962, p. 263.

[29] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “Hybrid mobile apps
in the google play store: An exploratory investigation,” in 2015 2nd ACM
international conference on mobile software engineering and systems.
IEEE, 2015, pp. 56–59.

[30] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement? a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the center
for advanced studies on collaborative research: meeting of minds, 2008,
pp. 304–318.

[31] T. D. Cook, D. T. Campbell, and A. Day, Quasi-experimentation: Design
& analysis issues for field settings. Houghton Mifflin Boston, 1979,
vol. 351.

[32] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering - An Introduction.
Kluwer Academic Publishers, 2012.

[33] Z. Wan, X. Xia, and A. E. Hassan, “What is discussed about blockchain?
a case study on the use of balanced lda and the reference architecture
of a domain to capture online discussions about blockchain platforms
across the stack exchange communities,” IEEE Transactions on Software
Engineering, 2019.

[34] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, “Web browser as
an application platform,” in 2008 34th Euromicro Conference Software
Engineering and Advanced Applications. IEEE, 2008, pp. 293–302.

[35] T. Mikkonen and A. Taivalsaari, “Apps vs. open web: The battle of the
decade,” in Proceedings of the 2nd Workshop on Software Engineering
for Mobile Application Development. MSE Santa Monica, CA, 2011,
pp. 22–26.

[36] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “End users’ percep-
tion of hybrid mobile apps in the google play store,” in 2015 IEEE
International Conference on Mobile Services. IEEE, 2015, pp. 25–32.

[37] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[38] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory anal-
ysis of mobile development issues using stack overflow,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 93–96.

[39] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and Q. Yu,
“Why is developing machine learning applications challenging? a study
on stack overflow posts,” in 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2019, pp. 1–11.

[40] A. A. Bangash, H. Sahar, S. Chowdhury, A. W. Wong, A. Hindle, and
K. Ali, “What do developers know about machine learning: a study of
ml discussions on stackoverflow,” in 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 2019, pp.
260–264.

[41] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in docker
development: A large-scale study using stack overflow,” in Proceedings
of the 14th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2020, pp. 1–11.

[42] A. Bandeira, C. A. Medeiros, M. Paixao, and P. H. Maia, “We need
to talk about microservices: an analysis from the discussions on stack-
overflow,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 255–259.

[43] Z. Jin, K. Y. Chee, and X. Xia, “What do developers discuss about
biometric apis?” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019, pp. 348–352.

[44] P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan, “What
do client developers concern when using web apis? an empirical study
on developer forums and stack overflow,” in 2016 IEEE International
Conference on Web Services (ICWS). IEEE, 2016, pp. 131–138.

[45] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, 2014, pp. 112–121.

