
Permission Issues in Open-source Android Apps:
An Exploratory Study

Gian Luca Scoccia∗, Anthony Peruma†, Virginia Pujols†, Ivano Malavolta‡, Daniel E. Krutz†
∗Gran Sasso Science Institute, L’Aquila, Italy

gianluca.scoccia@gssi.it
†Rochester Institute of Technology, Rochester, NY, USA

{axp6201, vp2532, dxkvse}@rit.edu
‡Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

i.malavolta@vu.nl

Abstract—Permissions are one of the most fundamental com-
ponents for protecting an Android user’s privacy and security.
Unfortunately, developers frequently misuse permissions by re-
quiring too many or too few permissions, or by not adhering to
permission best practices. These permission-related issues can
negatively impact users in a variety of ways, ranging from
creating a poor user experience to severe privacy and security
implications. To advance the understanding permission-related
issues during the app’s development process, we conducted
an empirical study of 574 GitHub repositories of open-source
Android apps. We analyzed the occurrences of four types of
permission-related issues across the lifetime of the apps.

Our findings reveal that (i) permission-related issues are a
frequent phenomenon in Android apps, (ii) the majority of
issues are fixed within a few days after their introduction, (iii)
permission-related issues can frequently linger inside an app for
an extended period of time, which can be as high as several years,
before being fixed, and (iv) both project newcomers and regular
contributors exhibit the same behaviour in terms of number of
introduced and fixed permission-related issues per commit.

Index Terms—Mobile Permissions, Android, Mobile Software
Engineering, Software Repository Mining

I. INTRODUCTION

The apps on our mobile devices enable us to do everything
from trade stocks to record vital health information. Although
these apps provide immense amounts of power, they also
present an unparalleled opportunity for security and privacy
threats. Due to the magnitude of these threats, it is imperative
that developers create apps that sufficiently protect our privacy
and security [22].

The sensitive data and functionality used by an app is
protected through permissions. Android apps use a permission-
based system where an app requires specific permissions to
carry out specific operations [8]. A developer must explicitly
state the permissions an app may request, and the end-user
can accept a subset of requested permissions that are deemed
dangerous [3]. Example dangerous permissions include the
ability to read SMS messages, record audio, and access the
user’s location. It is crucial for developers to make proper
permission-related decisions since improperly used permis-
sions (under and over-permissions) carry a wide range of
ramifications. These include increased app susceptibility to

malware and unwanted data leakage to ad libraries [23], [29],
[26]. Additionally, not adhering to permissions best practices
may have a wide range of implications. These may range from
hurting the user experience, to creating functional defects and
privacy and security-related issues [5], [20], [48], [52].

Unfortunately, developers do not always correctly use
permissions for numerous reasons, including a lack of
permissions-related knowledge [54] and even confusion over
the permission’s name [23]. There is substantial work exam-
ining the detrimental effects of permissions misuse [24], [25],
[61] and tools to assist in the identification of a variety of
permission-related issues (PRIs) [23], [11]. However, none of
the existing works examine when, why and who is making
permissions-related mistakes when developing apps.

In this paper, we provide a better understanding of how
developers are creating and fixing permissions-related issues
and the types of mistakes developers were making. To this aim,
we analyzed the GitHub repositories of Android 574 apps. Us-
ing custom-built software along with the existing permission
analysis tools M-Perm [16] and P-Lint [20], we identified a
variety of PRIs ranging from not correctly adhering to permis-
sions best practices to apps requesting too many permissions.
This empirical information provides us with a history of the
app’s development life cycle including (i) When permissions
and their related issues were introduced and fixed, (ii) who is
making these decisions, (iii) file-change history that we could
examine using permissions analysis tools, and (iv) all other
commit information such as commit messages.

Our results reveal that (i) PRIs are a frequent phenomenon
in Android apps (~50% of examined apps exhibit at least
one PRI, with over-permissions being the most prevalent),
(ii) the majority of issues are fixed in a timespan of a few
days after their introduction, (iii) in many cases, permission-
related issues can linger inside an app for an extended period
of time, that can be as high as several years, before being
fixed, and (iv) in total regular contributors introduce and fix a
larger number of PRIs along the lifetime of Android apps, but
this phenomenon is due to the fact that regular contributors
commit more code changes.

To summarize, the main contributions of this study are:

• a characterization of the frequency of PRIs and their decay
time in the context of 574 open-source Android apps;
• an objective assessment of whether PRIs are introduced
or fixed differently depending on the status of the developer
within the project;
• the replication package of the study containing its results,
raw data, and mining- and data analysis scripts [2].

The target audience of this paper includes both An-
droid researchers and developers. Researchers are provided
an evidence-based understanding of the phenomenon of
permission-related issues in Android apps. Additionally, An-
droid developers may use our findings to better plan their
development activities (e.g., planning refactoring sessions or
assigning code reviews).

II. THE ANDROID PERMISSION MODEL

Each Android app operates with a distinct Linux UID that
is associated with a set of permissions. Services verify if the
app’s UID is permitted to access the requested functionality.
An objective of this process is to ensure that the app adheres
to the principle of least privilege – granting the least amount
of privilege that the app needs to properly function [23]. For
example, before an app may read SMS messages it must be
granted the READ_SMS permission. To use the camera,
the app would require the CAMERA permission. This is
designed to limit the app from accessing unintended and non-
user permitted functionality, and also to limit the effects that
malware may have on a device [22]. Some permissions are
considered to be less risky and are referred to as normal
permissions. However, other permissions carry significantly
more potentially hazardous risks and are known as dangerous
permissions [3]. The AndroidManifest.xml file contains all
permissions an app requests.

Deciding on the permissions an app should request is
considered to be one of the most sensitive activities under-
taken during development due to the potential security and
privacy risks [23], and possible negative effects on the user’s
perception of the app [21], [48]. Studies have found that
developers frequently misuse permissions by either not adding
enough permissions to support requested functionality, or by
adding unnecessary permissions that are not needed for any
functionality in the app [23], [16]. Felt et al. [23] found
that Android developers often mistakenly add unnecessary
permissions in a counterproductive and futile attempt to make
the app work correctly, or due to confusion over the permission
name (i.e., they add it incorrectly believing its functionality
is necessary for their app). Developers should also ensure
that they are using permissions correctly from various best
practice perspectives [5]. Developers must also do their best
to avoid permission smells [20] and user security fatigue [47].
Unfortunately, there is no permission enforcement mechanism
that prevents developers from posting apps with improper
permissions to Google Play or other app stores [12].

Example of permission-related issue. Listing 1 illustrates an
example of PRI called Missing Check (MC) [20]. When the

method showAppointments() is called by the app (line 3), the
app is requesting permission to read the user’s calendar (line
4). Beginning with Android 6.0, the call to requestPermis-
sions() is necessary because users can revoke permissions at
any time and developers cannot assume that the app currently
has access to a specific permission, even if it previously had
access to it [8]. However, each time requestPermissions()
is called, a standard Android dialog is shown to the user
for requesting the needed permission, even for permissions
already granted [6]. Therefore, Android guidelines suggest that
prior to running code that requires a specific permission, the
method checkSelfPermission() should be called to determine
if the user has already granted access to the needed permission
[5]. Not adhering to this guideline can lead to a degradation
of the user experience since the user is overwhelmed with
messages requesting already granted permissions [6], [20].

1// Method for listing appointments saved in the user’s calendar
2void showAppointments(){
3ActivityCompat.requestPermissions(this, new String[{Manifest.

permission.READ_CALENDAR},
PERMISSION_READ_CALENDAR);

4// other tasks using information in the user’ s calendar
5}

Listing 1: Apps should call CheckSelfPermission() to verify
that it currently has access to the user’s calendar.

III. GOAL AND RESEARCH QUESTIONS

The primary goal of this study is to provide a better un-
derstanding of permission-related issues introduced and fixed
by developers in Android apps. To achieve this goal, we first
collect 2,002 Android repositories from F-Droid [1] and then
analyze these repositories using three existing open-source
analysis tools: M-Perm [16], P-Lint [20], and oSARA [2]. Our
research questions are as follows:

RQ1 – What are the most common types of permission-
related issues in Android apps? By determining the most
prevalent permission-related issues, Android developers can
be made cognizant of these issues and devote appropriate
efforts to avoid them in their apps. Answering RQ1 will also
help researchers gain better insights into the prevalence of
permission-related issues in Android apps. While previous
work examines permissions-issues on the older install-time
model [23], [11], [17], to our knowledge, this is the first study
that examines permission-related issues on a large scale on the
current Android run-time model.

RQ2 – How long do permission-related issues tend to
remain in Android apps across their lifetime? Understanding
how long permission-related issues typically exist in the code
of Android apps can provide insight into how long introduced
issues can be expected to impact the app. Indirectly, answering
RQ2 provides an objective indication regarding the priority of
developers to locate and address permission-related issues.

RQ3 – How does developers’ status within the project
correlate with the introduction of permission-related issues?
By determining if a developer’s status within a project sig-
nificantly correlates with the introduction of PRIs provides

insight on who should be making permission-based decisions
and modifications in Android apps. Answering RQ3 can also
provide additional insight on whether regular contributors
or project newcomers are introducing different amounts of
permissions-related issues. This can create the foundation
for improving the assignment of code reviews. For example,
additional security-oriented reviews may be performed on code
authored by developers whose status is more correlated with
the introduction of PRIs.

RQ4 – How does developers’ status within the project cor-
relate with fixes of permission-related issues? Answering RQ4
provides insight on whether regular contributors or project
newcomers fix different amounts PRIs. Here the underlying
intuition is that developers with more experience in the project
are more adept at fixing PRIs (see Section V-D).

Summarizing, identifying newcomer-specific effects in
open-source projects is relatively new [14], [58], [38], [32]
and it is specially important for better understanding the
onboarding process in open-source Android projects [38] and
for helping teams to deal with permission-related issues more
efficiently, e.g., via dedicated guidance in the decision making
process, practices, and tools.

IV. DATA COLLECTION AND ANALYSIS

Our data collection and analysis process consists of 3
phases: Repository Collection, Detection of PRIs, and Data
Analysis. We first mine the F-Droid catalog to obtain a list of
open-source Android apps and perform a set of filtering steps
on collected apps. In the second phase we execute the P-Lint
and M-Perm tools for statically analyzing apps source code
and project files. In the third phase, the results of the static
analysis tools are statistically analyzed. Further details of this
process can be found in Scoccia et al. [51].

A. Repository Collection

F-Droid is a catalog of FOSS apps for the Android platform.
F-Droid contains links to Android app Github repositories.
These projects range from small infrequently updated apps, to
large popular apps. We chose F-Droid as our primary source
for open-source Android projects due to the diversity of apps
in its catalog and for its use in prior research works [39], [31],
[10]. To retrieve the project repositories of the cataloged apps,
we first cloned the F-Droid repository and then parsed the text
files associated with each app to extract the apps’ metadata.
Extracted metadata includes name, description, category and
repository URL of each app. We then clone the GitHub
repository of all the apps. In order to avoid duplicates, we
exclude apps from our dataset that were duplicated/forked by
ensuring that all source URLs and commit log SHA’s are
unique. After cloning the repositories, we extract the following
data from each of them:

• Commit Log Details. Using Git’s commit log1, we retrieve
additional data associated to each commit, such as the
author and committer of the commit, their respective
timestamp, and the commit message.

1https://git-scm.com/docs/git-log

• Affected Files. For each commit of all apps, we examine
the list of affected files and extract the revision of all the
*.java and AndroidManifest.xml files.

Fig. 1: Repositories collection and filtering process

As shown in Figure 1, we mined a total of 2,002 GitHub
repositories. Since we used GitHub repositories, we ran the
risk of including inactive or unmaintained repositories in
our study [35]. To help mitigate this risk, we consider only
repositories that (i) have a lifetime span2 of at least 8 weeks,
(ii) contain at least 10 commits, (iii) with at least one commit
since January 2017 and (iv) also published on the Google Play
store. The 10-commits threshold is derived from the fact that
90% of all considered repositories have more than 10 commits
before this filtering step. The 8-weeks threshold is derived
from the fact that 8 weeks is the average development time for
an Android app [7] and has been used in a previous study on
mining GitHub repositories of Android apps [42]. The January
2017 rule has been adopted to filter out unmaintained apps,
without removing apps that are seldom updated. We excluded
apps that were not published on the Google Play store to filter
out unfinished or proof-of-concept apps. This filtering results
in a final dataset of 574 active repositories, containing a total
of 502,907 commits performed by 7,945 unique developers.

TABLE I: Demographics of apps included in the study (SD =
standard deviation, IQR = inter-quartile range)

Metric Min. Max. Median Mean SD IQR

Rating 0 5 4.294 4.179 0.6681 0.4767
Installs3 1 100m 10k 926.1k 7,594k 99k
Commits 11 34,380 260 876.10 2246.97 707.5
Committers 1 486 7 16.67 32.71 13

Table I provides a summary of the demographics for apps
included in the study. As demonstrated, apps in our dataset
have a median rating on the Google Play store of 4.294 (out
of a maximum of 5), while the median number of installs3 is
10k. The median number of commits for apps in our study is
260, and the median number of committers per app is 7. Based
on these numbers, we are reasonably confident that the apps
considered in our study are of good quality and adequately
representative of real-world projects.

2Lifetime span: the range between the first and last commits of a repository.
3Google Play does not provide the precise number of installs, but only a

range (i.e., 100-1000). We conservatively adopted the bottom of the range.
Hence, all statistics on installs should be considered as a lower bound.

B. Detection of PRIs

We used the existing M-Perm [16] and P-Lint [20] tools
to detect permission-based issues in Android apps. Although
both tools have been used in foundational studies [16], [20],
we decided to further evaluate them prior to including them
in our own research. Other permission analysis tools, such as
Stowaway [23] and PScout [11], have been used in existing
literature to conduct permission analysis. However, a direct
comparison with these tools was unfeasible, as both are several
Android versions out of date and neither is compatible with
the current run-time permission model.

Tool Evaluation. We evaluated M-Perm and P-Lint using
several oracle Android apps. These include minimal calendar,
camera, SMS messaging, contact storage and location record-
ing apps. We then created multiple versions of these apps, and
injected PRIs into them with the goal of covering numerous
possible cases in which a PRI may occur. We then ran M-Perm
and P-Lint on each of these app versions, identifying all TP,
FP, FN and TN for PRIs. Both tools obtained a precision and
recall value of 1.00. Although largely elementary, these results
provided confidence in the ability of these tools in our study.
The oracle apps are available on the project website [2]. Al-
though both tools used in our study are able to decompile and
analyze apk files [16], [20], decompilation was not performed
as the source code for subject apps was readily available. In
this analysis we created our own apps to provide a greater
amount of confidence that we were aware of all PRIs in the
this oracle, whereas manually identifying PRIs in existing apps
would have been a time-consuming and largely imperfect task.

After the successful analysis of these tools, we used them
to analyze all 502,907 commits belonging to the 574 apps in
our dataset. These tools enabled us to identify a variety of
permissions-based issues, ranging from not correctly adhering
to the permission standards proposed by Google [5], to more
severe issues such as over-permissions. Table II presents the
PRIs considered in this study. M-Perm is able to detect
occurrences of over and under-permission issues (i.e., O and
U PRIs). An app is over-privileged if it requests too many
permissions. Likewise, if it asks for too few permissions then
it is under-privileged [23]. Apps that misuse permissions have
an increased attack surface, making them more susceptible to
a variety of security and privacy-related issues [23], [16]. M-
Perm analyzes Android ≥ 23 apps and identifies instances of
over and under-privileged permissions.

Similar to code smells, permission smells are symptoms
of issues, but are not a definitive indication that a problem
exists [20]. P-Lint analyzes Android ≥ 23 apps for proper
permissions usage from a standards perspective. In this study
we focused on the missing check (i.e., MC) and multiple
requests in proximity (i.e., MRP) PRIs since (i) they were
prevalent, occurring in a large number of apps and (ii) they
were well-defined and had a clear negative impact. We focused
on these four types of PRIs since they are (I) Impactful (II)
Well-defined (III) Have been extensively analyzed in existing
works (permission gap) [61], [23], [55]. Our study focuses on

TABLE II: Permission-related issues detected in this study

ID Permission Issue Quality Security Tool

O Over-permission: too many
permissions (violates the least
privilege principle).

M-Perm

U Under-permission: not enough
requested permissions.

M-Perm

MC Missing Check: checkSelf-
Permission() is not called
when requesting a permission.

P-Lint

MRP Multiple Requests in
Proximity: Multiple
permission requested in
close proximity, possibly
overwhelming the user.

P-Lint

Android apps since we were able to easily collect and reverse
engineer a large set of Android apps, something that would
not be easily accomplished with iOS apps due to a lack of
available tools and available apps.

After the detection of PRIs, we detect the commits that
introduced and fixed each of them. This is a non-trivial task
as identifying these issues involves much more analysis than
merely examining each committed version with the static
analysis tools. The following statuses define each PRI event:

• New. When a PRI is found, we check if it exists in
the app at the time of the previous commit. If it does
not, starting from the version containing the issue we
examine each version of the app in a commit-by-commit
fashion to determine the commit that introduced the
PRI. Identifying this commit allows us to determine the
committer responsible for introducing the PRI.

• Exist. If the detected PRI is also found to exist in the
previous and subsequent versions of the app, then we
record it as ‘Exist’ since the commit does not modify the
state of the issue. These are expectedly observed quite
frequently as developers often make a variety of changes
to apps that are not permission-related.

• Fix. For every detected PRI, we check if the PRI exists
in the subsequent committed version of the app. If it does
not exist, we determine the commit that fixed the issue.
This is accomplished by starting with the immediately
subsequent commit after the version of the app exhibiting
the detected PRI and examining its source code using the
analysis tools. If the issue is not found, then we mark
the current commit as the commit that fixed the issue.
If the issue persists, we perform the same process on
each subsequent commit until we find the commit that
fixed the issue. This enables us to identify the committer
responsible for fixing the permission issue. If we reach
the last commit of the repository and no PRI fixing
commit is found, then the PRI is marked as unresolved.

Demographics information about the detected PRIs and their
related commits contextually to the discussion of the results
of this study are provided in Section V-A.

oSARA Tool and Replication Package We leveraged the
open Source Android Repository Analyzer (oSARA) tool [4]
to perform the necessary data collection and analysis for our
study. oSARA performs the following tasks: (I) Collects all
relevant Android repository information from F-Droid; (II)
Extracts all relevant permission information and versions from
these repositories; (III) Analyzes each extracted version for
PRIs using M-Perm and P-Lint; (IV) When PRIs are discov-
ered, oSARA analyzes previous and subsequently committed
files to determine the commit that either added or removed the
PRI. Using this commit information, we are able to discern
information about the developer performing the commit. Our
project website [2] contains all code developed for the study,
the raw dataset (> 6 GB), the schema details of our collected
data, and the oracle Apps used to verify P-Lint and M-perm.

C. Data Analysis

We will next describe the data analysis processes used to
answer our research questions.

RQ1. We account for all occurrences of each type of PRI
and provide an indication regarding their distributions by
means of summary statistics. We employ the Fisher’s ex-
act test [9] to assess independence of observations among
occurrences of the four PRIs types. We adopt the Fisher’s
test over alternatives (e.g., χ2-test [9]) due to its robustness
when dealing with sparse, unbalanced data [44]. We employ
the same test to perform post-hoc analysis, performing all
tests for all pairs of populations and adjusting resulting p-
values for inflation due to multiple comparisons via the Holm
correction procedure [50]. The omnibus Friedman test [19]
is then used to statistically determine if the four types of
PRIs exhibit a significant difference. The Friedman test is a
non-parametric test for one-way repeated measures analysis
of variance by ranks. We use the Friedman test because (i)
RQ1 is designed as a 1 factor – 4 treatments experiment,
(ii) the collected data is not adhering to the assumptions of
the ANOVA statistical test, and (iii) the Friedman test is a
non-parametric alternative to ANOVA that does not assume
independence of observations [19]. We apply the Conover’s
all-pairs comparison test as post-hoc analysis for performing
pairwise comparisons among each pair of PRI types [18].
Since we are applying multiple statistical tests, we correct the
obtained p-values via the Holm correction procedure [50]. We
additionally compute the effect-size of the differences among
PRIs distributions using the Cliff’s delta (d) non-parametric
effect size measure [30], which measures how often values in
a distribution are larger than the values in a second distribution.
Cliff’s d ranges in the interval [−1, 1] and is considered
negligible for d < 0.147, small for 0.148 ≤ d < 0.33, medium
for 0.33 ≤ d < 0.474, and large for d ≥ 0.474.

RQ2. In this phase of the study, we collect the decay time of
each occurrence of PRI. The decay time of a PRI represents
the number of days in which a PRI is present in the source
code of an app. We compute the decay time of a PRI as the
difference (in days) between the timestamp of the commit in

which the PRI has been fixed and the timestamp of the commit
in which it has been introduced in the GitHub repository of
the app. In this phase of the study we exclusively consider
the PRIs which have been fixed along the lifetime of the app,
so that their decay time is meaningful (i.e., the last commit
of a PRI includes the actual fix of the PRI and it does not
correspond to the last commit within the whole repository).

Summary statistics are used for providing an indication
about how decay times vary across the four types of PRIs.
The same statistical tests as in RQ1 (i.e., Friedman, Conover,
Holm correction and Cliff’s delta) are used for statistically
assessing the differences of decay times across PRIs.

RQ3 – RQ4. Both research questions RQ3 and RQ4 are
based on the concept of a developer’s status. In existing
literature, several repository-based metrics for proxying de-
veloper’s status (or experience) have been proposed, such as
(i) Developer’s Commit Ratio (DCR), defined as the number
of contributions made by a given developer for a repository
divided by the number of all commits done by all repository’s
contributors [40], (ii) maintainers and contributors defined as
those contributors with more than 30% and less than 10% of
all repository’s commits, respectively [57], and (iii) project
newcomers defined as those contributors with less than 3
commits in a repository [38]. In this study we use the latter
metric, as it has been defined in the literature [14], [58], [38],
[32]. Specifically, the status of a developer d at a given commit
c in a repository r as:

status(d, c, r) =

{
Newcomer, if nCommits(d, c, r) ≤ 3

Regular, otherwise

where c is the specific commit in r for which we want to
calculate d’s status and nCommits(d, c, r) is the number of
commits authored by developer d in repository r at the time
in which commit c is performed. Intuitively, at a given time, a
developer is a newcomer in the context of a given project if she
performed no more than 3 commits in the repository, otherwise
the developer is identified as a regular contributor. We opted
for the status(d, c, r) metric since it is (i) computationally
lightweight, (ii) used in the literature, and (iii) independent
from the size of the repository r.

To avoid the well-known aliasing problem, i.e., the same de-
veloper having multiple identities in GitHub repositories [28],
we apply the heuristic proposed by Kouters et al. for resolving
developers using multiple identities when committing on the
same repository [37]. This heuristic merges committers with
the same email prefix, i.e., the part before the @ symbol.
We chose the heuristic proposed by Kouters et al. because,
despite its apparent simplicity, there is empirical evidence
that it provides a good enough trade-off between performance
and simplicity of implementation w.r.t. other heuristics when
considering long time frames as in our study. We refer the
reader to [60] for a detailed evaluation of various heuristics
for solving the aliasing problem.

To account for project contributors authoring more commits
in potentially introducing and/or fix more PRIs, we com-

pute two additional metrics: issuesPerCommiti(d, t, r) and
issuesPerCommitf (d, t, r) [58]. Both metrics are defined
for each type of issue t, developer d, and repository r. The
first metric is defined as prisi(d,r)

nCommits(d,lastCommit(d,r),r) , where
prisi(d, r) is the set of PRIs introduced by developer d
in all commits they authored in r, and lastCommit(d, r)
is the last commit authored by d in r. Intuitively,
issuesPerCommiti(d, t, r) represents the ratio between the
total number of PRIs introduced by a developer in a repos-
itory and the total number of commits they authored in that
repository. The issuesPerCommitf (d, t, r) metric is similar
to issuesPerCommiti(d, t, r), but it focuses on the number
of fixed PRIs.

For answering RQ3 and RQ4, we report and analyze the
frequency of PRIs introduced (RQ3) and fixed (RQ4) in com-
mits performed by project newcomers and regular contributors.
Next, we build contingency tables with rows representing
the types of PRIs and columns representing the developers’
status; then, we compute the Cramer’s V coefficient of each
contingency table [50]. The Cramer’s V coefficient is a well-
known measure of association applicable to contingency tables
involving two categorical variables and it is defined within the
[0, 1] range, where 0 indicates no correlation and a value of 1
indicates perfect correlation.

For RQ3 and RQ4 we provide descriptive
statistics for both the issuePerCommiti(d, t, r) and
issuePerCommitf (d, t, r) metrics. For each metric, we
apply the Mann-Whitney U test for statistically testing the
following two-tailed null hypothesis: the distributions of
the number of PRIs introduced (fixed) per commit are the
same for both newcomers and regular contributors [62]. The
effect-size of the differences among PRIs distributions is
quantified by using the Cliff’s delta (d) measure.

V. RESULTS

A. RQ1 – What are the most common types of permission-
related issues in Android apps?

Table III provides descriptive statistics for occurrences of
PRIs, as well as counts of unique issues and affected apps. A
total of 3,900 unique permission issues were identified. They
are distributed across 402 distinct apps, with a median of 1 PRI
per app. For all types of PRI, we can observe that the mean
amount of occurrences is higher than the median, meaning that
the average is influenced by apps in the upper part of the data
that exhibit an especially high amount of PRIs. Furthermore,
we can observe that over and under-permissions are the two
most common issues, with 2,635 and 939 occurrences. The
apps in our dataset have on average more than four over-
permission issues and more than one under-permission issue.
Diffusion of issue types MC and MRP appears to be on a lower
scale, with 205 and 91 instances affecting 60 and 9 apps.

As a preliminary step prior to further analysis, we test for
independence of observations among the four PRIs types. We
statistically test this hypothesis by applying the Fisher’s exact
test. The results of the test (p − value < 0.01) allow us to
reject the null hypothesis of independence among occurrences

TABLE III: Descriptive statistics for occurrences of PRIs

PRI # Affected
apps # Min. Max. Median Mean SD IQR

O 2,635 387 0 269 1 4.59 16.98 3
U 969 82 0 251 0 1.69 12.31 0

MC 205 60 0 32 0 0.36 1.76 0
MRP 91 9 0 67 0 0.16 2.84 0

Aggr. 3,900 402 0 377 1 6.79 26.28 4

of PRI types. Likewise, the null hypothesis is always rejected
(p− value < 0.01) for all post-hoc pairwise comparisons.

Differences in means and standard deviation across the four
types of PRIs suggest that the distribution of occurrences
differs according to PRI type. We statistically test this hy-
pothesis by applying the Friedman omnibus test. These results
(p− value < 0.01) allow us to reject the null hypothesis that
distributions of occurrences of PRI types are not statistically
significantly different. Results of pairwise comparisons, using
the Conover’s test, reveal that the distribution of occurrences
of each PRI type is statistically different from the others. Esti-
mations of magnitude of differences, via pairwise applications
of Cliff’s d, reveal a large effect size for all pairs involving
PRIs of type O, while it is negligible for all other pairs.

B. RQ2 – How long do permission-related issues tend to
remain in Android apps across their lifetime?

Descriptive statistics of decay time for each type of PRI is
summarized in Table IV. We can observe that for all PRI types
the minimum decay time is equal to 1 day, while the maximum
is close to 7, 3, 2 and 1.5 years for issues of type O, U, MC,
and MRP, respectively. Median decay is quite similar for O
and U issues, with a value of approximately one week, but
significantly differs for issues MC and MRP, with a value of
about 12 weeks for the former and 1 day for the latter. As
expected, results of the application of the Friedman omnibus
test (p− value < 0.01) allows us to reject the null hypothesis
that distributions of decay times across the four types of PRIs
does not significantly differ. Post-hoc analysis, performed via
the Conover’s test, reveals that the distribution of decay times
for each PRI type is significantly different from the others,
with the sole exception of the U-MC pair, for which we cannot
reject the null hypothesis.

TABLE IV: Descriptive statistics for decay time of PRIs

PRI Min. Max. Median Mean SD IQR

O 1 2,784 6 187.6 419.11 105
U 1 1,066 5 45.25 102.35 28

MC 1 760 82.5 166.8 200.96 303.75
MRP 1 544 1 43.82 124.29 1.5

Aggr. 1 2,784 6 150.3 360.51 84

The mean of decay time is much higher than the median
for all PRI types. This suggests that the average is greatly
influenced by a subset of the data on the higher part of the
scale. This observation is even more notable for O and MC

PRIs, that exhibit a comparatively significantly higher mean
(187.6 and 166.8 days, against 45.25 and 43.82 days for issues
U and MRP) and standard deviation (419.11 and 200.96 days,
opposed to 102.35 and 124.29 days). We also observe that MC
issues exhibit a relatively higher inter-quartile range (303.75
days), implying that decay time for MC issues is much more
dispersed than for other PRIs. Results of applications of Cliff’s
d for effect size estimations reveal a small effect between O
and MC and negligible for all other pairs.

C. RQ3 – How does developers’ status within the project
correlate with the introduction of permission-related issues?

Figure 2 shows the frequency of developers’ status when
introducing each type of PRI. We observe that PRIs are mostly
introduced by regular contributors. Over-permissioning is the
type of PRI which is introduced more frequently by project
newcomers, however its frequency is still far below the one
of regular contributors.

Fig. 2: Developers’ status when introducing PRIs

In order to quantitatively assess if whether the introduction
of PRIs among project newcomers and regular contributors
depends on the type of PRI, we compute the Cramer’s
V coefficient, which measures the strength of association -
varying between 0 to 1 - between two nominal variables. In
this case, the computed Cramer’s V coefficient value is 0.227
(which is low) meaning that there is a low association between
developers’ status and the types of PRIs being introduced.

TABLE V: Issues per commit over developers’ status when
introducing PRIs

PRI Min. Max. Median Mean SD IQR

Newcomer

O 0 5.0 0 0.022 0.177 0
U 0 3.0 0 0.004 0.064 0
MC 0 1.667 0 0.0004 0.025 0
MRP 0 3.0 0 0.002 0.051 0

Aggr. 0 5.0 0 0.007 0.099 0

Regular

O 0 1.714 0 0.005 0.051 0
U 0 0.75 0 0.001 0.051 0
MC 0 0.585 0 0.0002 0.021 0
MRP 0 0.667 0 0.001 0.008 0

Aggr. 0 1.714 0 0.002 0.029 0

Aggr. 0 5.0 0 0.004 0.073 0

As previously mentioned in Section IV, the results discussed
above may depend on the total number of commits that
each developer performs in a repository. Table V shows the
number of PRIs introduced by each developer per repository,
normalized by the total number of authored commits. Here we
can observe that the number of PRIs per commit are generally
very low both for project newcomers and regular contributors,
with all medians equal to 0, very low averages, and extremely
compact distributions (all standard deviations < 0.177).

After the application of the Mann-Whitney U test, we do not
obtain a statistically significant measure of correlation between
these two categorizations (p-value = 0.29)); this does not
allow us to reject the null hypothesis that the distributions
of the number of PRIs introduced per commit are the same
for newcomers and regular contributors.

D. RQ4 – How does developers’ status within the project
correlate with fixes of permission-related issues?

We answer this research question by following the same
procedure of RQ3; the only differences are that (i) now we
are focusing on the commits in which PRIs have been fixed
(as opposed to when they are firstly introduced) and (ii) we
are considering exclusively the PRIs which have been fixed
along the lifetime of the app, so that their PRI fixings commit
is meaningful. Figure 3 shows the frequency of developers’
statusses when fixing each type of PRI.

Fig. 3: Developers’ status when fixing PRIs

The data demonstrates that in total, regular contributors fix
more PRIs than project newcomers, specially when dealing
with over-permissioning PRIs. Similarly to what happened also
for RQ3, we also have a very low Cramer’s V coefficient,
i.e., 0.051. Again, this confirms that there is a low association
between developers’ status and the types of PRIs being fixed.

Table VI presents descriptive statistics for the number of
PRIs fixed by each developer in each repository, normalized
by the total number of commits authored by each developer
authored in each repository. Also in this case, the number
of PRIs per commit is very low across all PRI types and
developers’ status, with an overall meanof 0.003 and all
medians equal to zero. The application of the Mann-Whitney U
test yields a statistically significant result with p-value < 0.01),
allowing us to reject the null hypothesis that the distributions
of the number of PRIs fixed per commit are the same for
newcomers and regular contributors [62]. However, the effect
size is negligible (Cliff’s d = −0.023).

TABLE VI: Issues per commit over developers’ status when
introducing PRIs

PRI Min. Max. Median Mean SD IQR

Newcomer

O 0 4.0 0 0.013 0.14 0
U 0 2.8 0 0.003 0.065 0
MC 0 1.0 0 0.001 0.031 0
MRP 0 1.0 0 0.001 0.035 0

Aggr. 0 4.0 0 0.005 0.081 0

Regular

O 0 1.643 0 0.005 0.042 0
U 0 2.8 0 0.002 0.044 0
MC 0 0.333 0 0.0001 0.005 0
MRP 0 0.667 0 0.0009 0.017 0

Aggr. 0 2.8 0 0.002 0.032 0

Aggr. 0 4.0 0 0.003 0.061 0

VI. DISCUSSION

RQ1. Permission-related issues are a frequent phenomenon
in Android apps. The vast majority of the analyzed apps
suffer from the presence of at least one PRI. Over and under-
permissions are more prevalent than MC and MRP PRIs.
Occurrences of PRIs appear to be dependent among PRI types.
The distribution of occurrences significantly differs for each
PRI type. By examining the number of issues identified for
each PRI type, we can easily observe that the majority of
issues is of types O and U. The mean amount of occurrences
per app differs among the two, with a value µ = 4.59
for the former and µ = 1.69 for the latter. These results
provide an initial notion of the prevalence of over- and under-
permission phenomena in Android apps, as partially also
confirmed by Felt et al. [23]. Moreover, by examining the
counts of identified issues for all PRI types, we notice that
issues of types MC and MRP amount to a comparatively small
minority of the total. Although further research is required to
fully determine the reason behind this imbalance, we believe
that a primary factor is that MC and MRP issues are harder to
introduce. In fact, in order to introduce MC or MRP, specific
conditions must be met in the application code. However, types
O or U may only require a mistake in the Android Manifest
file. The dependence among occurrences of PRI types hints
that whenever one type of PRI is found in the development
history of an app, then also other kinds of PRIs are likely to be
present. This is not overly surprising as developers who are
not knowledgeable, or attentive about permissions are more
likely to introduce multiple types of PRIs in their apps.

The most common types of PRIs occurring in Android apps
are of types O and U. This indicates that even if issues and
their consequences are well-known and have been studied in-
depth by the academic community [23], [17], [11], that they
are still a common occurrence, even in apps developed for
the newer versions of Android. As a consequence, advise
developers to pay more attention to these PRI types and also
advocate for the adoption of permission analysis tools (such

as M-Perm [16] and P-Lint [20]) during app development.
RQ2. Results indicate that the majority of PRIs are fixed in a
timespan of a few days after their introduction. Nonetheless,
in many cases PRIs can linger inside an app for an extended
period of time, that can be as high as several years, before
being fixed. The PRIs considered in this study can impact
the end-users opinion of the app [48], [21], and can result
in security problems [23]. Therefore, understanding character-
istics and reasons for the persistence of these longer-living
PRIs represents a relevant research question that demands
further investigation. Of particular interest are the higher
median values of issues MC. As previously mentioned in RQ1,
specific conditions must be met inside an app’s source code to
introduce one of these issues, meaning that the issue cannot
solely exist in the AndroidManifest file. We speculate that this
greater specificity of necessary conditions is also the reason
behind the greater median decay time, i.e., once introduced,
more non-trivial changes in the source code must be carried
out to fix such issues. In other words, MC issues are harder
to introduce but also harder to fix once introduced.

Given the fact that PRIs of all kinds can linger inside an
app for an extended period of time we encourage developers
and organizations to pay increased attention to code that has
been written during early project life, during quality assurance
activities (i.e., code review sessions). Moreover, since MC
issues tend to persist a long time once introduced, extra
attention should be paid by developers and organizations to
both ensure that they are not introduced, but to also regularly
check their apps for these types of issues. Further work is
needed to understand precisely why MCs tend to last longer
compared with other PRIs.
RQ3. Overall, regular contributors introduce more PRIs in
Android apps w.r.t. project newcomers across all types of PRIs.
This result is (i) quite expected since the number of commits
authored by regular contributors is much higher than the
number of commits authored by project newcomers (216,069
vs 10,383 commits in total) and (ii) confirmed by Tufano
and colleagues [58], another study involving code smells
introduced by newcomers or regular contributors in Java-based
open-source projects. This observation is further confirmed
when analyzing the number of introduced issues per commits;
indeed, even though in average project newcomers tend to
introduce more issues across all types of PRIs (mean number
of introduced PRIs = 0.005 for newcomers vs 0.002 for regular
contributors), such a difference is not statistically significant.
This finding may be an indication that both project newcomers
and regular contributors actually risk to introduce PRIs when
working on their Android apps. We suggest organizations and
project maintainers to take special care of PRIs (e.g., by
planning dedicated code review sessions), independently of
the experience of the developer performing the commit.

The results discussed above demonstrate that even regular
contributors need to be cognizant of PRIs. This strengthens
the case for adopting permission analysis tools during app
development, as discussed in Section V-A. In addition, we
suggest organizations and project maintainers to be cognizant

of over- and under-permission issues during activities that
might require changes to app permissions, even when regular
contributors are involved.
RQ4. The frequencies of PRI fixes across project newcomers
and regular contributors tend to follow the same trends as the
ones related to the introduction of PRIs (see Section V-C),
but with one main difference: project newcomers fixed fewer
PRIs in total, specially for over-permissioning issues. We may
expect this observation since we can speculate that PRIs are
non-trivial issues and are managed (and fixed) by developers
who are more familiar with the internals of the app being
developed. The obtained results confirm the intuition that since
PRIs are non-trivial issues in an Android they tend to be fixed
by developers who are not newcomers in the project.

Newcomers and regular contributors are exhibiting a
statistically-significant difference of the number of issues fixed
per commit, but with a negligible effect size. This means
that, despite the fact that regular contributors tend to fix more
PRIs per commit, such a difference is extremely small. It is
interesting to mention that a recent study on code smells in
Android apps [32] further confirmed that developers with few
contributions, like newcomers, do not forcibly introduce more
or remove less code smells. Overall, those observations lead us
to conjecture that PRIs (and generic code smells as emerged
in the work by Habchi et al. [32]) in open-source Android
projects are managed by contributors belonging to different
groups and that developers’ experience does not seem to be
a good predictor of the introduction or fixing of PRIs/code
smells in the source code of the app. As future work, we will
perform a more in-depth analysis in order to better charac-
terize this phenomenon, e.g., by investigating on the specific
activities performed by developers when introducing/fixing
PRIs, interviewing developers to better understand the context
in which PRIs are introduced and fixed, and to assess if
integrating the automated detection of PRIs in the development
workflow (e.g., in a continuous-integration pipeline) may help
in having less PRIs in today’s Android apps.

VII. THREATS TO VALIDITY

Although our research led to several interesting results, there
are several threats to validity.
Internal Validity In this study we rely upon the M-Perm and
P-Lint tools. While these tools have been published in peer-
reviewed venues, they are both still reasonably new. Like with
all static analysis tools, they are not perfect, and tool imperfec-
tions have the capability to skew research results. In particular,
obfuscated code is known to be particularly challenging for
tools of this kind [45]. As described in Section IV-B, we
validated both tools on a set of benchmark applications, thus
making us reasonably confident about their accuracy. In order
to foster independent checks and verification, all evaluation
data is available in the replication package [2] of this study.

We examined ‘commit ownership’ and not ‘code ownership’
in our study. While ‘code ownership’ is a general term used
to describe whether one person is primarily responsible for
a software component [13], commit ownership is merely the

author who made the commit to the repository. Due to our
empirical examination of existing repositories, it would have
been impossible to examine code ownership in our study.
Since we only knew the committing author, we were unable
to account for other developers who may have contributed to
the commit, for example in the case of pair programming. We,
therefore, considered ‘code ownership’ out of scope for this
study and focused on ‘commit ownership’. However, future
work could also include code ownership to provide a possible
alternative view on the results.

We relied on the status(d, c, r) metric to proxy developer’s
experience in a project. Although reasons for this choice
were described in Section IV-C, it is important to notice
that the metric we adopted does not consider factors such as
commit scale, quality of the work done or frequency among
developer commits. Therefore in some cases, the metric might
not properly represent a developer experience.

We utilized Git user names to identify developers. An inher-
ent limitation of using this process is that developers could use
different user names throughout the project, and the researcher
would only be able to assume that these are two different
developers. An additional limitation of many empirical studies
is if developers are following a pair programming process,
then the committer of the code will be assumed to be the sole
developer. The study would not be able to account for the
efforts of the non-committing developer.

In some cases, due to licensing reasons, open-source app
repositories might not contain parts of the app code that is
added at a later stage, before publication in app stores (e.g., ad
libraries). In these cases, the app manifest file might include
some permissions currently not used in its code but added
in anticipation of additions. Our analysis of over-permissions
might have been influenced by these instances.
External Validity For our study, we empirically analyzed the
version control repositories of open-source apps. While we
analyzed a large number of open-source Android applications,
we only examined a small subset of the millions of available
Android apps, and hence our results might not generalize.

Other permission analysis tools such as PScout [11] could
also have been included to examine apps that rely on the
install-time permission system, in use until Android API
versions 5.1. In our study, we did not include other tools as
we focused on the current Android permission model and for
consistency reasons. M-Perm uses a call graph to determine
the reachability of the app’s source code. However, during
our analysis, we did not evaluate M-Perm’s ability to reach
dynamically loaded code. We may, therefore, consider this a
potential limitation to our study.

Our work is empirical in nature, enabling us to analyze a
large number of apps. Future work could conduct a laboratory
study and include developer interviews to further understand
developer permissions-decisions and mistakes.

VIII. RELATED WORK

Previous works have analyzed Android permissions from
a variety of perspectives. Stowaway [23] combines callback

directed API with the app behavior to identify the necessary
permissions for the app’s runtime. PScout [11] parses the
examined code to build its syntax tree and then used it to
link between active API calls and invoked permissions. Krutz
et al. [40] did not target permissions-misuse in their study,
but did find that developers who revert permission-related
decisions typically had a higher level of code ownership than
the developer who added the permission. Calciati et al. [15]
conducted a preliminary study to understand how permission
requests apps evolve over several releases. They found that
apps typically request more permissions over time and that the
removal of permissions does not typically imply the loss of
functionality. This work differs from ours in that we primarily
focused on developer tendencies and who was actually making
the permissions-based decisions, and mistakes, in the app
development and maintenance process.

Researchers have studied the prevalence and effects of
permission-misuse in Android apps. Tang [55] examined
10,710 apps and found that 76% of the apps contain at least
one over-privilege. This work found a much higher occurrence
of over-privileges as opposed to prior studies using Stowaway
(36%) [17] and PScout (53%) [11]. This work differs in that
we examined permissions and permission-based issues during
the development process (not merely from a topical perspec-
tive), analyzed only Android 6.0+ for permissions issues, and
we utilized more than merely an NLP-based technique to dis-
cover permission-based mistakes. Jha et al. [34] report on the
different types of mistakes committed by developers in writing
Android manifest files. Their results highlight that developers
often commit mistakes while performing this activity, which
can translate into security, reliability, and availability issues.
By analyzing file-change history over the app’s development
life cycle, we were able to track a different set of PRIs
and investigate developers’ roles in introducing and fixing
these issues. Watanabe et al. [59] focused on text description
that accompanies an app on app stores, comparing resource
mentioned in descriptions to those used in the app source code.
From their analysis, they identify some common reasons that
lead to overpermissioning issues in Android apps, including
usages of third party libraries and frameworks that require
unnecessary permissions. In our work, instead we focused
more on ocurrences of PRIs in an app development history,
cross referencing information extracted from apps source code
and its commit histories. Mujahid et al. [46] investigated the
occurrences of specific PRIs that can affect Android wearable
apps. Their findings highlight that a considerable amount of
apps are affected by these issues and that overpermission
issues are quite common, to comply with requirements specific
for Android wearable apps. They hint that developers lack of
knowledge and lack of support from existing tools are the main
reasons for the proliferation of such issues.

Previous works have analyzed effects of permissions on the
user’s perception of the app [48], [21]. Lin et al. [41] examined
user comfort levels when using permissions they did not fully
understand, or when they did not comprehend why the app
needed the permission. They found that users generally felt

uncomfortable and may even delete applications when they
did not understand why it requested a permission they deemed
unnecessary. Scoccia et al. [52] found that users tend not to
understand why they are being asked for certain permissions,
and frequently complain about this in their reviews.

Taylor et al. [56] examined the evolution of app permission
usage with each app release. This was accomplished by taking
snapshots of requested app permissions in the Google Play
store. They found apps were requesting more permissions
over time. This work differs from ours in that they examined
permission requests at a higher app level, while we examined
who was making permission requests cause permission issues.

Numerous other works have explored the impact of code
smells on a variety of factors including code quality and
software security. Rahman et al. [49] conducted a qualitative
analysis of 1,726 infrastructure as code (IaC) scripts to identify
seven common security smells. This work also created a
static analysis tool that located security smells and identified
software vulnerabilities. Other works have even explored code
and security smells in Android [27], [43], [33], [36]. While
we also examine smells in Android, we focus specifically on
PRIs, and permission smells. Code smells have even been used
to predict software issues. Soltanifar et al. [53] utilized code
smells to create a defect prediction model. This work found
that code smells are a strong indicator of possible defects in a
software product. While these previous works have examined
code smells, their causes, and impacts from a variety of
perspectives, our work is the first to examine when permission
smells in mobile apps appear, and who creates them.

IX. CONCLUSIONS AND FUTURE WORK

The results of the study provide evidence-based insights for
better understanding and managing permission-related issues
in Android apps. Specifically: (i) permission-related issues
is a frequent phenomenon in Android apps, with a strong
prevalence of over-and under- permissions; (ii) the majority
of permission-related issues are fixed in a span of a few days,
even though in many cases some issues can plague the app
for an extended period of time (i.e., years) before being fixed;
(iii) regular contributors introduce and fix a considerably larger
number of PRIs along the lifetime of Android apps, but this
phenomenon is related to the fact that regular contributors
commit more code changes.

Future work will investigate if PRIs accumulate-diminish
over the lifetime of an app, potentially revealing interesting
patterns about their evolution. We will also perform a more
in-depth study to understand what developers do when they
introduce or fix PRIs; this study will involve a qualitative anal-
ysis of (i) the changes performed in the PRI introducing/fixing
commits, (ii) their corresponding commit messages, and (iii)
the discussions around their related pull requests.

Our work benefits both developers and researchers to better
understand permission-related issues. For researchers, this
paper create the foundation for future work in the area of
permissions-related issues. For developers, this work provides
insight on how teams can better plan development activities.

REFERENCES

[1] Fdroid repository. https://f-droid.org/.
[2] Mobile permissions. https://mobileevolution.github.io.
[3] Normal and dangerous permissions. https://developer.android.com/

guide/topics/permissions/requesting.html#normal-dangerous.
[4] Osara: Open source android repository analyzer. https://github.com/

MobileEvolution/oSARA/.
[5] Permissions best practices. https://developer.android.com/training/

permissions/best-practices.html.
[6] Requesting permissions at run time. https://developer.android.com/

training/permissions/requesting.html.
[7] How long does it take to build a mobile app? http://www.kinvey.com/

how-long-to-build-an-app-infographic, 2017.
[8] Permissions Overview – Android developer guidelines. https://developer.

android.com/guide/topics/permissions/, 2018. [Online; accessed 16-
May-2019].

[9] A. Agresti and M. Kateri. Categorical data analysis. Springer, 2011.
[10] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo:

Collecting millions of android apps for the research community. In
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working
Conference on, pages 468–471. IEEE, 2016.

[11] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: Analyzing
the android permission specification. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages
217–228, New York, NY, USA, 2012.

[12] D. Barrera, J. Clark, D. McCarney, and P. C. van Oorschot. Under-
standing and improving app installation security mechanisms through
empirical analysis of android. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’12, pages 81–92, New York, NY, USA, 2012. ACM.

[13] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Don’t
touch my code!: Examining the effects of ownership on software
quality. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, pages 4–14, New York, NY, USA, 2011. ACM.

[14] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. B. Chikha.
Competitive coevolutionary code-smells detection. In International Sym-
posium on Search Based Software Engineering, pages 50–65. Springer,
2013.

[15] P. Calciati and A. Gorla. How do apps evolve in their permission
requests?: A preliminary study. In Proceedings of the 14th International
Conference on Mining Software Repositories, MSR ’17, pages 37–41.
IEEE Press, 2017.

[16] P. Chester, C. Jones, M. W. Mkaouer, and D. E. Krutz. M-perm: A
lightweight detector for android permission gaps. In 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), pages 217–218, 2017.

[17] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 239–252, New York, NY, USA, 2011. ACM.

[18] W. J. Conover and W. J. Conover. Practical nonparametric statistics.
1980.

[19] W. W. Daniel et al. Applied nonparametric statistics. Houghton Mifflin,
1978.

[20] C. Dennis, D. E. Krutz, and M. W. Mkaouer. P-lint: A permission
smell detector for android applications. In 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 219–220, May 2017.

[21] S. Egelman, A. P. Felt, and D. Wagner. Choice architecture and
smartphone privacy: There’s a price for that. In In Workshop on the
Economics of Information Security (WEIS), 2012.

[22] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and
M. Rajarajan. Android security: a survey of issues, malware penetration,
and defenses. IEEE communications surveys & tutorials, 17(2):998–
1022, 2015.

[23] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS ’11, pages 627–638,
New York, NY, USA, 2011. ACM.

[24] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness of
application permissions. In Proceedings of the 2Nd USENIX Conference
on Web Application Development, WebApps’11, pages 7–7, 2011.

[25] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner.
Android permissions: User attention, comprehension, and behavior. In
Proceedings of the Eighth Symposium on Usable Privacy and Security,
SOUPS ’12, pages 3:1–3:14, New York, NY, USA, 2012. ACM.

[26] X. Gao, D. Liu, H. Wang, and K. Sun. Pmdroid: Permission supervision
for android advertising. In 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS), pages 120–129, Sept 2015.

[27] M. Ghafari, P. Gadient, and O. Nierstrasz. Security smells in android.
In 2017 IEEE 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 121–130, Sep. 2017.

[28] M. Goeminne and T. Mens. A comparison of identity merge algo-
rithms for software repositories. Science of Computer Programming,
78(8):971–986, 2013.

[29] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WISEC ’12, pages 101–112, New York, NY, USA, 2012.
ACM.

[30] R. J. Grissom and J. J. Kim. Effect sizes for research. A broad practical
approach. Mah, 2005.

[31] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha. Code smells in ios
apps: How do they compare to android? In 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 110–121, 2017.

[32] S. Habchi, N. Moha, and R. Rouvoy. The rise of android code smells:
Who is to blame? In MSR 2019-Proceedings of the 16th International
Conference on Mining Software Repositories, 2019.

[33] G. Hecht, N. Moha, and R. Rouvoy. An empirical study of the
performance impacts of android code smells. In 2016 IEEE/ACM
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 59–69, May 2016.

[34] A. K. Jha, S. Lee, and W. J. Lee. Developer mistakes in writing
android manifests: An empirical study of configuration errors. In
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 25–36. IEEE, 2017.

[35] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. An in-depth study of the promises and perils of mining
github. Empirical Software Engineering, 21(5):2035–2071, 2016.

[36] M. Kessentini and A. Ouni. Detecting android smells using multi-
objective genetic programming. In 2017 IEEE/ACM 4th International
Conference on Mobile Software Engineering and Systems (MOBILE-
Soft), pages 122–132, May 2017.

[37] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. van den Brand.
Who’s who in gnome: Using lsa to merge software repository identi-
ties. In Software Maintenance (ICSM), 2012 28th IEEE International
Conference on, pages 592–595.

[38] V. Kovalenko and A. Bacchelli. Code review for newcomers: is
it different? In 2018 IEEE/ACM 11th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE),
pages 29–32. IEEE, 2018.

[39] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson,
A. Filipski, and J. Smith. A dataset of open-source android applications.
In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 522–525, 2015.

[40] D. E. Krutz, N. Munaiah, A. Peruma, and M. W. Mkaouer. Who added
that permission to my app?: An analysis of developer permission changes
in open source android apps. In Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems, MOBILESoft
’17, pages 165–169, Piscataway, NJ, USA, 2017. IEEE Press.

[41] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang.
Expectation and purpose: Understanding users’ mental models of mobile
app privacy through crowdsourcing. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12, pages 501–510,
New York, NY, USA, 2012. ACM.

[42] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago.
How maintainability issues of android apps evolve. In 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME),
pages 334–344, Sep. 2018.

[43] U. A. Mannan, I. Ahmed, R. A. M. Almurshed, D. Dig, and C. Jensen.
Understanding code smells in android applications. In 2016 IEEE/ACM
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pages 225–236, May 2016.

[44] C. R. Mehta, N. R. Patel, and A. A. Tsiatis. Exact significance
testing to establish treatment equivalence with ordered categorical data.
Biometrics, pages 819–825, 1984.

[45] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware
detection. In Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007), pages 421–430. IEEE, 2007.

[46] S. Mujahid, R. Abdalkareem, and E. Shihab. Studying permission
related issues in android wearable apps. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
345–356. IEEE, 2018.

[47] S. Parkin, K. Krol, I. Becker, and M. A. Sasse. Applying cognitive con-
trol modes to identify security fatigue hotspots. In Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016). USENIX Association,
2016.

[48] A. Peruma, J. Palmerino, and D. E. Krutz. Investigating user perception
and comprehension of android permission models. In Proceedings of
the 5th International Conference on Mobile Software Engineering and
Systems, MOBILESoft ’18, pages 56–66, New York, NY, USA, 2018.
ACM.

[49] A. Rahman, C. Parnin, and L. Williams. The seven sins: Security smells
in infrastructure as code scripts. In Proceedings of the 41st International
Conference on Software Engineering, 2019.

[50] J. Rosenberg. Statistical methods and measurement. In Guide to
Advanced Empirical Software Engineering, pages 155–184. Springer,
2008.

[51] G. L. Scoccia, A. Peruma, V. Pujols, B. Christians, and D. E. Krutz. An
empirical history of permission requests and mistakes in open source
android apps. In Proceedings of the 16th International Conference on
Mining Software Repositories, MSR ’19, pages 597–601, Piscataway,
NJ, USA, 2019. IEEE Press.

[52] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi.
An investigation into android run-time permissions from the end users’
perspective. In Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems, MOBILESoft@ICSE 2018,
Gothenburg, Sweden, May 27 - 28, 2018, pages 45–55.

[53] B. Soltanifar, S. Akbarinasaji, B. Caglayan, A. B. Bener, A. Filiz, and
B. M. Kramer. Software analytics in practice: A defect prediction model
using code smells. In Proceedings of the 20th International Database
Engineering & Applications Symposium, IDEAS ’16, pages 148–
155, New York, NY, USA, 2016. ACM.

[54] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen. Asking for
(and about) permissions used by android apps. In Mining Software
Repositories (MSR), 2013 10th IEEE Working Conference on, pages
31–40, 2013.

[55] J. Tang, R. Li, H. Han, H. Zhang, and X. Gu. Detecting permission over-
claim of android applications with static and semantic analysis approach.
In 2017 IEEE Trustcom/BigDataSE/ICESS, pages 706–713, Aug 2017.

[56] V. F. Taylor and I. Martinovic. To update or not to update: Insights from
a two-year study of android app evolution. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
ASIA CCS ’17, pages 45–57, New York, NY, USA, 2017. ACM.

[57] A. Trockman. Adding sparkle to social coding: An empirical study
of repository badges in the npm ecosystem. In Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, ICSE ’18, pages 524–526, New York, NY, USA, 2018.
ACM.

[58] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia,
and D. Poshyvanyk. When and why your code starts to smell bad
(and whether the smells go away). IEEE Transactions on Software
Engineering, 43(11):1063–1088, 2017.

[59] T. Watanabe, M. Akiyama, T. Sakai, and T. Mori. Understanding the
inconsistencies between text descriptions and the use of privacy-sensitive
resources of mobile apps. In Eleventh Symposium On Usable Privacy
and Security ({SOUPS} 2015), pages 241–255, 2015.

[60] I. S. Wiese, J. T. da Silva, I. Steinmacher, C. Treude, and M. A. Gerosa.
Who is who in the mailing list? comparing six disambiguation heuristics
to identify multiple addresses of a participant. In Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on, pages
345–355. IEEE, 2016.

[61] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov. Android permissions remystified: A field study on
contextual integrity. In 24th USENIX Security Symposium (USENIX
Security 15), pages 499–514, 2015.

[62] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering. Computer Science.

Springer, 2012.

