
0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 1

Enhancing Trustability of Android Applications
via User-Centric Flexible Permissions
Gian Luca Scoccia, Ivano Malavolta, Marco Autili, Amleto Di Salle, Paola Inverardi

Abstract—The Android OS market is experiencing a growing share globally. It is becoming the mobile platform of choice for an
increasing number of users. People rely on Android mobile devices for surfing the web, purchasing products, or to be part of a social
network. The large amount of personal information that is exchanged makes privacy an important concern. As a result, the trustability
of mobile apps is a fundamental aspect to be considered, particularly with regard to meeting the expectations of end users. The
rigidities of the Android permission model confine end users into a secondary role, offering the only option of choosing between either
privacy or functionalities. In this paper, we aim at improving the trustability of Android apps by proposing a user-centric approach to the
flexible management of Android permissions.The proposed approach empowers end users to selectively grant permission by
specifying (i) the desired level of permissions granularity and (ii) the specific features of the app in which the chosen permission levels
are granted. Four experiments have been designed, conducted, and reported for evaluating it. The experiments consider performance,
usability, and acceptance from both the end user’s and developer’s perspective. Results confirm confidence on the approach.

Index Terms—Android Permissions, Static Analysis, Trustability.

F

1 INTRODUCTION

The Android market is experiencing an explosive growth in
the last years. It is the smartphone OS market leader among
all age segments in the US, UK, and other countries [1].
People rely on Android mobile devices for surfing the web,
purchasing products, or to be part of a social network.
Represented by the well known Google Play Store, the
Android apps market now counts more than two millions
apps, downloaded billions of times per year [2].

In this landscape, the Android permission model plays
a key role, given the constant need of mobile apps to access
sensitive and private information of end users [3], [4], [5],
to the point that consumers have to choose between lower
prices and more privacy protection [6], [7]. The Android
permission model can influence the success of mobile apps
as well. Indeed, a recent empirical study found that privacy-
aware users with negative concerns on an app’s runtime
permissions tend to give negative reviews to the whole
app, thus confirming the importance of how permissions
are managed for the success of Android apps [8].

The current Android permission model suffers of a num-
ber of rigidities related to, notably, the granularity level
of the permissions, the timing at which permissions are
granted, the fact that the permission model considers all
users as equal [9], [10]. On the one hand, this lack of
flexibility may have a negative impact on the success of a
mobile app; on the other hand, it neglects the rights of the

• I. Malavolta is with the Department of Computer Science, Vrije Univer-
siteit Amsterdam, The Netherlands.
E-mail: i.malavolta@vu.nl

• G. L. Scoccia, M. Autili, A. Di Salle, and P. Inverardi are with
the Department of Information Engineering, Computer Science and
Mathematics (DISIM), University of L’Aquila, Italy.
E-mail: {gianluca.scoccia, marco.autili, amleto.disalle,
paola.inverardi}@univaq.it

Manuscript received Month XX, 20XX; revised Month XX, 20XX.

user to fully express her desires and exert her control on
how and by whom her data are used. According to a survey
conducted among adult Americans [11], 91% of participants
believe that consumers have lost control over how personal
information is collected and used by companies, and that
most participants would like to do more to protect their
personal information.

In this paper, we propose Android Flexible Permissions
(AFP), a user-centric approach to flexible permissions manage-
ment aimed at empowering end users to play an active
role with respect to Android permissions. AFP embraces the
European vision of next generation internet, more human-
centric and concerned with privacy protection by giving
control back to users [12]. End users are allowed to specify
and customize fine-grained permission levels on private or
sensitive resources, according to their own subjective pri-
vacy concerns, risk taking attitudes and sense of trust. AFP
leverages a novel permission model through which fine-
grained app permissions are specified on a per-feature1 basis.
Differently from the current Android permission model,
AFP empowers end users to selectively grant finer-grained
permissions by specifying (i) the desired permission levels2

(e.g., access to the contacts list can be granted to all contacts
that do not belong to specific circles of people like relatives
or close friends), and (ii) the features of the app in which the
specified permission levels are granted (e.g., access to the
relatives circle in the contacts list can be granted only during
the usage of the video call feature in a messaging app). AFP
offers a dedicated external mobile app for managing flexible
permissions.

From the developer’s point of view, AFP enables apps
to support user-defined permission levels with very limited

1. Building on the definition provided in the Software Engineering
Body of Knowledge [13], the term feature is used to denote a function-
ality offered by the app to the user.

2. The granularity at which a sensible resource/data can be accessed.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 2

additional effort. Developers can work on their mobile apps
as usual, without using any additional library or tool. In
order to use AFP, a developer is provided with automatic
support by the AFP Web application that (by means of a
guided workflow) allows to (i) define the features offered
by the mobile app; (ii) map each feature to the compo-
nents that implement it, i.e., Android activities, services,
broadcast receivers, or content providers. Given the feature-
component(s) mappings, AFP leverages static control-flow
analysis for automatically retrofitting the app so to make it
able to handle fine-grained and feature-based permission
levels.

We evaluated AFP by designing, conducting, and report-
ing four independent experiments aimed at empirically in-
vestigating on key aspects of AFP. Specifically, we assessed
the performance of the AFP instrumenter via 1,277 real-
world apps, the performance at runtime of 7 AFP-enabled
real-world apps, the usability and acceptance of AFP for
both end users and developers (involving 47 and 11 subjects,
respectively).
The main contributions of this paper are:

1) an in-depth discussion of the characteristics and chal-
lenges of the Android permission model;

2) the definition of a new flexible permission model for
Android apps;

3) the definition of an approach that empowers end users
to specify and enact flexible permissions for Android
apps;

4) a publicly available implementation of AFP using a combi-
nation of Java and Web technologies;

5) the results of the empirical evaluation of AFP, and a
complete replication package for independently assessing
and replicating the aforementioned experiments.

An initial version of this work appeared as a poster
paper at the 2017 ACM/IEEE International Conference on
Software Engineering [14]. The new contributions of this
journal version include: the precise definition of the AFP
permissions data model, the app features specification and
mapping mechanism, the algorithm for automatically in-
strumenting Android apps in order to make them AFP-
enabled, and its implementation and technological aspects.
Another completely new contribution of this paper is the
empirical evaluation of AFP, for which we designed, con-
ducted, and reported 4 independent experiments about its
performance, usability, and acceptance from the perspective
of both end users and developers. This paper also includes
a thorough discussion of related work.

The remainder of the paper is structured as follows.
Section 2 discusses in details the problem we want to
solve and motivates our research. Section 3 presents the
AFP approach, and Section 4 describes its implementation
details. Section 5 reports on the experimental evaluation we
performed and discusses the limitations of AFP. Section 7
presents related work, and Section 8 closes the paper and
discusses future work.

2 THE NEED OF A NEW PERSPECTIVE

In this section, we first analyze the evolution of the Android
permission system by discussing the issues of both the older

install-time permission system (Section 2.1) and the most re-
cent usage-time permission system used by the latest Android
releases (Section 2.2). Then, in Section 2.3, we discuss the
need of a new perspective according to which users must be
given the possibility of specifying their own rules on how
sensitive resources should be accessed by apps.

2.1 Install-time permission system

Traditionally, up to version 5.1.1 (i.e., Android API level 22),
Android makes use of an install-time permission system
to regulate the access to sensible APIs of the platform.
Developers have to declare upfront if their apps require
access to security- and privacy-relevant parts of the plat-
form. Very little control is in the hands of the end user, who
can only decide to grant or reject all permissions to access
such parts of the Android APIs before app installation, and
can only rely on warning dialogs to assess possible risks
(often using extremely broad wording). If the user only
agrees with a subset of the permissions, she has to abort
the app installation. This amounts to force the end user to
either grant all permissions or not install the app. It has
been observed that users routinely decide to not install an
app because of the permissions it requires [3]. Moreover,
usability studies show that only a minority of users have a
reasonable comprehension of warning dialogs [3], [15], [16].
Dialogs have been found to be vague and devoid of context,
as users have no way to know what app features the install-
time permissions correspond to.

2.2 Usage-time permissions system

Starting with Android 6 (i.e., Android API level 23), access
to privacy- and security-relevant parts of the platform can
be enforced by a usage-time permission system. While the
app is running, the system checks whether the app func-
tionality that is going to be used for the first time has
the required permissions or not. Users are prompted for
confirmation when the functionality attempts to access a
restricted part of the platform.

While runtime permissions provide more detail over
the specific functionalities of the app affected by the per-
missions, hence helping users in making their decision,
permissions are still granted on a whole-app basis, i.e.,
once granted the permission is valid for the entire app, further
reducing control on how and when private data is accessed.
Users can potentially revoke permissions already granted
to an app but this requires exiting the app, accessing their
device system settings and manually changing the permis-
sion settings of the app. The whole process is unwieldy, and
users are unlikely to do so [17].

In addition, in the Android platform, permissions are
grouped into permission groups. A permission group is a
set of two or more permissions that reference the same
resource. For instance, the permissions READ CONTACTS
and WRITE CONTACTS both belong to the CONTACTS
permission group. Whenever an app tries to access a pro-
tected resource, users are prompted for confirmation only
if no other permission in the belonging permission group
is already granted. This is done in order to minimize a
phenomenon known as warning fatigue, which has been

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 3

observed in the past in other usage-time permissions sys-
tems [18], [19], [20] – i.e., users may become insensitive
to warning messages after being exposed to an excessive
amount. While the concept of permission group can be
effective in reducing warning fatigue, it also makes the
permissions more coarse grained. Multiple permissions are
in fact granted with a single confirmation, further reducing
the user control on the resources that will be accessed with
respect to the granted permissions.

2.3 A new perspective and its challenges
The issues discussed above can be addressed by reconsid-
ering the way permissions are declared, requested and en-
forced, shifting to a process where users are given the means
to establish their own rules on how sensitive resources are
accessed, thus aiding them in retaining control over their
data and consequently increasing their trust on the platform.

We need to acknowledge that end users can have diverse
privacy desiderata and concerns [21]. As a consequence, we
have to move away from a one-size-fits-all approach in favor
of more flexible solutions. Under this perspective, the goal
of AFP is to provide users with the means to specify permis-
sion preferences in a more fine-grained and customizable
manner, leaning on finer-grained representations of both
app functionalities and sensible resources.

On the other side of the coin, developers should be
provided with the means to create, with limited additional
effort, apps that adapt to user preferences (possibly chang-
ing on the fly), coupled with new solutions for acquiring
users preferences that avoid warning fatigue [3].

As already introduced, we denote a functionality offered
by the app to the user with the term feature; the granularity
at which a resource can be accessed with the term level.
Examples of features include: showing the list of restaurants
nearby, sending a message to a friend, creating a new post in
a social networking app, etc. Considering user’s location as
a resource, examples of levels are: full access to it, precision
limited to current city, precision limited to current region,
etc.

3 THE AFP APPROACH

Android Flexible Permissions (AFP) grants permissions on
a per-feature basis by (i) keeping track of user privacy
preferences, and (ii) automatically enacting and enforcing
them at runtime. AFP is composed of the following main
components:

• AFP App, an app from which users can manage their
own flexible permissions;

• AFP Library, a library for access control at runtime;
• AFP Server, a web app that allows developers to au-

tomatically retrofit an existing app in order to enable
AFP in it. It also offers mechanisms for signing and
verifying AFP-enabled apps.

With reference to Figure 1, in the following we describe
the workflow of AFP. Section 3.1 describes the steps to be
followed by developers before publication, in order to make
their apps compatible with AFP. Section 3.2 describes the
steps to be followed by users upon the first app execution,
in order to specify the desired permissions.

3.1 App developer perspective
The developer workflow is designed to minimize the effort
needed to create apps compatible with the flexible permis-
sion system.

Developers create their mobile apps as usual, without using
any additional library or tool. When an app X is ready to
be published (right-hand side of Figure 1), the developer can
send the APK archive of X to the AFP Server so to enable
AFP (1). As detailed in Section 3.5, the Android Components
Extractor extracts all the Android components of X , i.e.,
its constituent activities, services, broadcast receivers, and
content providers (2). Then, the developer uses a web-based
editor for (i) defining the features of X in terms of their
name and description (later used by end users), and (ii)
mapping each one of them to (a subset of) the extracted
Android components implementing it (3). Step 3 is the only
additional effort we request to developers, and it is greatly
facilitated by the web-based editor together with the auto-
matic extraction of Android components. The output of this
phase is the feature-component mapping model, specifying the
mapping between app features and Android components.

The AFP Instrumenter statically analyzes and automati-
cally retrofits app X to enable AFP on it (4). The instru-
menter performs the following operations (that are totally
transparent to the developer): (i) automatically includes our
AFP Library in the app; (ii) instruments X so that all calls
to sensitive Android APIs are proxified and redirected to
the AFP Library; (iii) injects the code in the main activity
of X for allowing the end user to switch to the AFP App
when launching X for the first time; (iv) assigns a unique
secret key to the app X , which will be used at runtime by
the AFP App Checker (12); (v) creates a new record into the
repository of registered apps; (vi) rebuilds and re-sign X as
a new APK archive. Finally, the instrumented APK of X is
made available to the developer (5), who can then proceed
with the publication of the APK in the Google Play Store (6).

3.2 End-user perspective
The user workflow is designed to minimize the end user
effort to specify flexible permissions.

Users can download and install (7) apps that adopt the
AFP system directly from the Google Play Store since no
modifications to the Android OS are required. Upon the first
launch of the newly installed app (8) they are redirected to
the AFP App (9), which in turn invites them to configure the
flexible permissions. Should the user be unwilling to do so,
she can immediately abort the process, and the app usage
will continue with the standard permission system provided
by the Android platform. The same happens if, during the
configuration process, the AFP App is not found installed on
the user’s device.

Once inside the AFP App, for each feature of the app
the user can specify her own permission preferences (10).
This aspect of AFP allows to address a well-known problem
in the current Android permission model, i.e., the fact that
users tend to not understand why they are being asked
for certain permissions, often complaining about this aspect
in their reviews in the Google Play store [8]. Indeed, by
explicitly asking end users to define the permission levels
on a per-feature basis allows users to (i) read the description

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 4

Fig. 1. Overview of the AFP approach (underlined labels represent manual steps, whereas all the others are fully automatic)

of each feature provided by the developer and (ii) better
understand why certain permissions are being requested in
the context of each specific feature of the app, rather than
within the app as a whole. By using AFP, end users have
a more transparent view of the features provided by their
apps, and a better knowledge about the context in which
(sensitive) permissions are requested by the app.

While the end user is setting her desired permissions,
in background, the AFP App also interacts with the AFP
Server (11). The AFP App and the AFP Server communicate
via the HTTPS protocol. The server also uses an internally
generated secret key (4) to check the app installation and
verify the developer’s identity, hence certifying that nobody
tampered with the AFP Library. Moreover, it verifies that the
APK downloaded from the Google Play Store is exactly the
one produced by our approach (12). When the results of the
checks are ready (13), and the configuration phase finishes,
the user will be redirected to the newly installed app,
together with the configured flexible permissions configu-
ration (14). The permissions configuration is then associated
with the AFP-enabled app and the user can continue with
app usage, in a completely transparent way, i.e., no further
user interaction or dialogs are required.

The access to private or sensitive resources will be
granted by the AFP Library according to the specified per-
missions configuration (15). The AFP Library proxifies each
call of the app to sensitive Android APIs (e.g., call to the
Android geolocation manager), hence wrapping the access
to sensitive resources.

The AFP App allows to specify default levels for the
permissions (e.g., geolocation is allowed only at the city-

level, independently of the app requesting it), that will be
used as a basis during the configuration of the flexible
permissions for any newly installed AFP-compliant app.
This characteristic permits to speed up the configuration of
the permissions for each newly installed AFP-enabled app.

3.3 Flexible permission data model
This section presents the AFP data model to which permis-
sion configurations conform (Figure 2). It is based on the
following core concepts:

• Resource represents a sensitive part of the Android
platform whose access can be controlled by the AFP
library. In AFP, resources are both physical parts of
the device, such as the device camera and micro-
phone, and logical ones, such as the user’s contacts
book.

• Feature represents a user-level functionality of the
app. Every Feature uses one or more Resources. In
addition, every Feature is directly connected through
the realizedBy relation with one or more AndroidCom-
ponent instances, each of them representing one or
more source code files inside the app.

• A PolicyItem regulates access to the Resources used
by the Feature. It represents a single access restriction
rule that can be imposed upon one or more Resources.
For instance, a PolicyItem could specify that the access
to the device camera has to be forbidden, or that only
the user’s city should be shared when the device is
queried for the user position.

• AccessPolicy is a conjunction of one or more Poli-
cyItems and it is linked to a Feature.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 5

Fig. 2. Flexible permission data model

The remaining classes in the data model define the
restrictions that can be enforced:

• BooleanPolicyItem permits either full access to the
resource or no access at all.

• RestrictedPolicyItem restricts the access to a restric-
tionSet, whose type can be either BLACKLIST or
WHITELIST. For instance, it can be used to restrict
access to the contacts list to only contacts that do not
belong to specific circles of people like relatives or
close friends.

• ReadWritePolicyItem and LocationPolicyItem extend the
LayeredPolicyItem class and allow for granting access
to a Resource at incremental levels. Higher levels are
used for less restrained accesses to the Resource. Read-
WritePolicyItem has four possible levels. In particular,
ADD NEW ACCESS and MODIFY EXISTING AC-
CESS allow for adding new records to the Resource
and editing existing ones, respectively. For example,
it is possible to grant access to the sms messages
but prevent creating and sending new ones. Location-
PolicyItem instead provides four levels of different
precisions for access to the user position.

3.4 Features specification

The AFP approach involves (i) the automatic extraction of
Android components composing the mobile app (step 2
in Figure 1) and (ii) the definition of a mapping between
features and the Android components implementing them
in the app (step 3).

For what concerns step 2, all relevant information is
extracted from both the XML file of the Android manifest
and the bytecode of the Java classes of the app. The output
of this step is a fragment of configuration conforming to
the flexible permission data model described in Section 3.3
containing only instances of the AndroidComponent class
and its subclasses.

In order to specify the mappings (step 3), the developer
uses a form (Figure 3) where she can declare the main
features of the app and, by means of check boxes, associate

them to the automatically extracted Android components.
The final result of this step is the complete configuration,
which also includes the required instances of the Feature
class.

Fig. 3. Feature to Android components mapping specification form

3.5 App instrumentation
The AFP approach involves also the automatic instrumen-
tation of the app (step 4 in Figure 1). Such step is carried
on by the AFP Instrumenter that performs a set of operations
that can be grouped into three main phases: (i) decomposing
the input APK, (ii) rewriting the app bytecode, and (iii)
repackaging the rewritten app.

The goal of the first phase is to extract, from the compiled
binary files of the app under analysis, the app Java bytecode.
Although the bytecode is a low-level representation, it is
suitable to perform analysis and instrumentation. In turn,
the third phase performs the reverse operation, transform-
ing the instrumented bytecode back into a compiled binary
file. The logic behind the first and the third phases is
straightforward, and they are both carried out using freely
available tools arranged in a pipe-and-filter pattern. The
adopted tools are described in Section 4.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 6

input : App, an Android app
C, set of Android components ∈ App
F, set of features ∈ App
M, mapping of elements of F to C

output: App′, AFP-compliant version of App

1 begin
2 foreach c ∈ C do
3 scan C to extract SC, set of sensitive calls ∈ C
4 if SC 6= ∅ and c /∈M then

/* found sensitive call not mapped to any
feature, raise error and terminate */

5 break
6 end
7 if c is App main activity then
8 add intent trigger towards AFP app to

allow for permissions configuration
9 end

10 foreach sc ∈ SC do
11 identify r, resource affected by sc
12 foreach f ∈ F do
13 if c is mapped to f then
14 add r to fr , set of resources used by

f
15 end
16 end
17 replace sc with sc′, call to AFP library

wrapper
18 end
19 end
20 end

Algorithm 1: Rewriting algorithm of AFP instrumenter

During the second phase, rewriting of the app bytecode
is performed by an ad-hoc analyzer, following Algorithm 1.
Given as input an Android app and its feature-component
mappings, the algorithm returns an AFP-compliant version
of the app. In order to do so, the algorithm iterates over
all Android components that constitute the app (line 2
in Algorithm 1) and extracts from each of them the set
of sensitive API calls performed inside its logic (line 3).
Each call is analyzed for the purpose of identifying the
affected resource (lines 10-16), and creating and binding
instances of the Resource class in the AFP data model. Each
sensitive call is then replaced with a corresponding call to
the AFP library (line 17), which contains a proxy class for
each of the Android APIs that enable access to restricted
parts of the platform (further details in Section 3.6). While
performing the rewriting, the algorithm also checks that all
classes containing calls to restricted parts of the Android
API belong to a feature (lines 4-6). This ensures that the
developer does not leave some Android components out
of the mapping. Additional code (via Android Intents) is
added in the main activity (i.e., the app entry point) to set
up communication between the app under rewriting and
the AFP App. It enables the configuration of the flexible
permissions on the startup of the app (lines 7-9).

The illustrative example, given in Figure 4, shows byte-
code rewriting of an API call for reading the last registered

user’s location. In the original version (Listing A), a Lo-
cationManager object is loaded from a local variable and
pushed onto the stack (instruction 1). Then, the constant
string “network”, used as a parameter in the upcoming
method invocation, is also pushed onto the stack (instruc-
tion 2). Both are consumed from the stack with an invocation
to the virtual method getLastKnownLocation (instruction
9). Finally, the Location object resulting from the method
call is read from the stack and stored in a static field
(instruction 10). In the rewritten version (Listing B), the
invocation to the virtual method getLastKnowLocation has
been replaced with a static call to its proxified method in the
AFP Library (instruction 9). Since this method also requires,
as an array parameter, the identifiers of features to which
it belongs, this information is also pushed onto the stack
(instructions 4-8).

3.6 Permissions enactment and enforcement

As described in Section 3 (see Figure 1), a user can download
and install AFP-enabled apps from the Google Play Store, as
she would normally do for all apps. Upon starting a newly
installed app for the first time, she is redirected to the AFP
App, which enables permission enactment by allowing her
to configure the flexible permissions associated to it. Two
screenshots of the app are presented in Figure 5. During the
configuration, she is presented the list of features offered
by the AFP-enabled app. For each feature, the accessed
sensitive resources are listed and, for each one of them, she
can set her preferences, hence regulating the access to the
resources for that single feature. As an example, consider a
user interested in the Facebook app. After downloading and
installing it on her device, on the first run she is presented
with the list of app features, i.e., Wall, Messaging, Events,
etc. Assuming that she does not want her friends to know
her exact location every time she posts on her Wall, she can
restrict the precision of the Location resource for the Wall
feature, while leaving it unchanged for Events in order to
still discover ongoing events nearby.

While the configuration is ongoing, the AFP App estab-
lishes communication with the AFP Server and checks the
validity of the app secret key, promptly raising a warning
should it be different from the one stored on the server. If
there is no Internet connection and the validity of the app
secret key cannot be checked, AFP App raises a warning
and makes the user aware of the potentially dangerous
situation. The warning is not blocking and, if the user agrees
to proceed, it does not prevent the usage of the app. It is
important to note that this specific situation occurs only
once during the whole lifetime of each AFP-enabled app
since the check of the identity of its developer is performed
at its very first launch after the installation.

The configuration procedure can be terminated at any
time and, upon termination, the configured permissions
configuration is transmitted back to the calling app, and
stored by the AFP Library.

Access control is in the hands of the AFP Library, which
contains a proxy class for each of the Android APIs that
enable access to restricted parts of the platform. At runtime,
whenever invoked, the methods contained in the proxy
classes perform a check against the configured permission

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 7

1 aload 0
2 ldc network
3
4
5
6
7
8
9 invokevirtual android/ l o c a t i o n /LocationManager . getLastKnownLocation : (

Ljava/lang/ S t r i n g ;) Landroid/ l o c a t i o n /Locat ion ;
10 p u t s t a t i c l o c a t i o n : Landroid/ l o c a t i o n /Locat ion ;

Listing A

1 aload 0
2 ldc network
3 i const 1
4 anewarray j ava/lang/ S t r i n g
5 dup
6 i const 0
7 ldc WeatherForecast
8 a a s t o r e
9 i n v o k e s t a t i c g s s i /aq/ i t / a f p l i b r a r y /AFPLocationManager .

getLastKnownLocation : (Landroid/ l o c a t i o n /LocationManager ; Ljava/lang/
S t r i n g ; [Ljava/lang/ S t r i n g ;) Landroid/ l o c a t i o n /Locat ion ;

10 p u t s t a t i c l o c a t i o n : Landroid/ l o c a t i o n /Locat ion ;

Listing B

Fig. 4. Comparison between an original byte code file (Listing A) and the rewritten version produced by the AFPInstrumenter (Listing B).

Fig. 5. Two screenshots of the AFPApp: list of features presented to the
end user and possible levels for Location

model and allow access to the restricted parts of the plat-
form only if admitted by the model. If access to a resource
has to be allowed only at certain level, then the AFP Library
performs returns only the data for which access has been
granted by the user.

As shown in Figure 6, both the AFP App and AFP Library
reside and operate at the application level of the Android
stack. It is important to note that even when AFP is used, the
Android OS is still fully enforcing its standard permission
model. Hence, in its current implementation, AFP can be
seen as an enhancement of the standard Android permission

Fig. 6. Android software stack with added AFP components

system for privacy-aware users, rather than an alternative
solution. This design choice of operating only at the ap-
plication level of the Android stack, without modifying
the lower levels, has been made in order to (i) allow for
experimentation without the constraints introduced by the
underlying levels, (ii) validate the effectiveness of feature-
and level-based permissions prior to developing an im-
plementation fully integrated with the Android platform
and, (iii) simplify potential future porting of AFP on other
platforms.

4 IMPLEMENTATION AND USED TECHNOLOGIES

AFP makes use of a number of different techniques and
technologies. Static analysis techniques are used to verify
APK packages uploaded by developers on the AFP Server.
Specifically, static analysis is utilized to verify that develop-
ers accessed sensitive resources only through the methods
provided by the AFP Library (otherwise we cannot guar-
antee that the preferences set by users in permissions con-
figurations will be fulfilled). In order to do so, AFP utilizes
an intra-procedure analysis to detect Android API invoca-
tions within each method of the app’s code. Our prototype
implementation adopts the list of sensitive Android APIs
provided by Rasthofer et al., who also provide a method-
ology to obtain an up-to-date list. For the implementation
of this analysis, we rely on the static analysis framework
Soot [22], coupled with Dexpler [23] to disassemble APK
packages and transform Android’s Dalvik bytecode into a
format suitable for analysis.

The integrity of the AFP Library implementation is also
checked by the AFP Server through a checksum-based in-
tegrity verification mechanism. This permits to avoid the
possibility that malicious developers could tamper with the
library, thus circumventing the need of obtaining authoriza-
tion against the permissions configuration.

Communication between the AFP App and any AFP-
compliant app is enabled by Android’s Intents [24]. An
Intent is a special kind of object used to enable inter-app
communication. In AFP, explicit Intents are leveraged to
both redirect the end user to the AFP App and return the
configured fine-grained permissions configuration once it
has been personalized.

Changes to the permission system introduce the risk of
app instability, as apps may not expect to have their permis-
sion requests denied [25]. When denying permissions leads
to crashes, users are likely to become more permissive to
improve app stability, thus counteracting the whole reason-
ing behind feature- and level-based permissions. With this
concern in mind, in our implementation, we make use of

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 8

“mocking”3: in the event of a denied permission our system
supplies apps with well-formed but non-sensitive data. For
example, if the end user allows only city-level geolocation,
when the app calls the Android location manager, the AFP
Library intercepts that call and returns the geographical
center of the city where the user is, instead of her precise
location. This enables apps to continue functioning usefully
unless access to the protected resource is critical for its
correct behavior.

To perform the automatic extraction of the Android com-
ponents composing the mobile app (step 2 in Figure 1) we
firstly decode the input APK using apktool4. The Android
manifest file is then analyzed via a simple XML parser we
developed in Java. The analyzer of the Java bytecode is
implemented by using the Apache Commons Byte Code
Engineering Library5.

The tool that allows developers to specify feature-
components mappings (step 3) has been implemented as a
web-based tool, built upon the Flask6 web framework.

The AFP Instrumenter is implemented by using several
tools. The tool apktool is used for decomposing the APK
and producing a Classes.dex file containing the app byte-
code. Then, the dex2jar7 tool is used to obtain a conven-
tional jar file that, subsequently unpacked via the zip shell
command, permits to obtain the .class files constituting the
app. Rewriting of the .class files is done by our Java imple-
mentation of Algorithm 1, leveraging the Apache Commons
Byte Code Engineering Library. Instrumented .class files are
then repackaged back to a .dex archive via the Android SDK
dx8 tool, and the APK archive is reassembled using again
apktool. At the end, the resulting package is signed using
jarsigner9. The whole end-to-end process is tied together by
a Python script.

5 EVALUATION

In this section, we report the four independent experiments
we performed to evaluate the AFP approach. For the pur-
poses of the experiment 2, 3 and 4, we focused on the
three Android APIs that are among the ones considered
the most sensible by end users [27] while at the same
time widely used by apps on the Google Play market [28]:
Camera, LocationManager, and MediaRecorder. To allow
easy replication and verification of the experiments, we
provide a complete replication package10 including: the
source code of all the components of the AFP approach,
the source code of the measuring tools we implemented
for carrying on the experiments, the raw data we obtained
from the experiments, and all the scripts for analysing the
experiments’ results.

3. This aspect is inspired by the Mockdroid approach by Beresford et
al. [26])

4. http://ibotpeaches.github.io/Apktool/
5. http://commons.apache.org/proper/commons-bcel/
6. http://flask.pocoo.org
7. http://github.com/pxb1988/dex2jar
8. http://wing-linux.sourceforge.net/guide/developing/tools
9. http://docs.oracle.com/javase/tutorial/deployment/jar/signing.

html
10. https://github.com/gianlucascoccia/androidflexiblepermissions

5.1 Experiment 1: Performance of the AFP instru-
menter

Design – The goal of this experiment is to assess the per-
formance of the AFP Instrumenter, the module of the AFP
server that performs the app static analysis and instrumen-
tation. We chose the AFP Instrumenter as the object of our
experiment since (i) it is the most complex component in
our AFP Server, and (ii) its malfunctioning or low perfor-
mance in terms of execution time may negatively impact
the adoption of the whole approach by developers, who
will not be willing to spend (relatively) long time for the
result of the app instrumentation phase. This experiment is
designed as a multi-test within object study [29], because it
is conducted on a single object (i.e., the current implemen-
tation of the AFP Instrumenter) across a set of subjects (i.e.,
the APKs archives). More specifically, we randomly selected
1,277 APK archives from a dataset consisting of 11,917 free
apps from the Google Play Store; the dataset was created
in the context of a previous research in which we mined
the top 500 most popular free apps for each category of
the Google Play store [30]. We executed the experiment by
(i) automatically generating a feature-component mapping
containing a feature for each Java class of the app (this can
be considered a worst case scenario for our instrumenter),
(ii) isolating the AFP Instrumenter component so that it
could be programmatically executed in isolation, and (iii)
sequentially executing AFP Instrumenter for all the 1,277
APKs. For each execution of the AFP Instrumenter, we
measured the time for performing each single step of its
internal pipeline (see Section 4). Measurements were taken
via a Macbook Pro-Retina running Mac OSX 10.11.5 with a
2.6 GHz Intel core i5 processor and 8 Gb of memory.

Fig. 7. Execution times of the AFP Instrumenter pipeline (in seconds)

Results – Figure 7 shows the execution times of each step of
the AFP Instrumenter pipeline. Each step takes an average
of less than 10 seconds, with the only exception of the dx
tool (18.78 seconds in average), mainly because of its heavy
I/O operations and performed optimizations11. When con-
sidering the total execution time of the whole pipeline (see
the last box plot in the figure), we can observe that our AFP
Instrumenter takes an average of 41.19 seconds to complete,
with a minimum of 4.03 seconds and a maximum of 143.07
seconds.

11. https://android.googlesource.com/platform/dalvik/+/
a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/dx/src/com/android/
dx/command/dexer/Main.java

http://ibotpeaches.github.io/Apktool/
http://commons.apache.org/proper/commons-bcel/
http://flask.pocoo.org
http://github.com/pxb1988/dex2jar
http://wing-linux.sourceforge.net/guide/developing/tools
http://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
http://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
https://android.googlesource.com/platform/dalvik/+/a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/dx/src/com/android/dx/command/dexer/Main.java
https://android.googlesource.com/platform/dalvik/+/a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/dx/src/com/android/dx/command/dexer/Main.java
https://android.googlesource.com/platform/dalvik/+/a9ac3a9d1f8de71bcdc39d1f4827c04a952a0c29/dx/src/com/android/dx/command/dexer/Main.java

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 9

Discussion – We consider the results as satisfactory. On
average, developers have to wait less than a minute for ob-
taining the AFP-enabled app from the AFP Server, and less
than 3 minutes in the worst case of our experiment. Since
the AFP Instrumenter is executed only once for each app,
the waiting time for developers due to app instrumentation
is reasonable. Hence:

The performance of the AFP Instrumenter is satisfac-
tory, requiring on average less than a minute.

Threats to validity – A possible threat to validity of our
experiment is represented by the selection of only free apps
as subjects. Although this choice was driven by budgetary
constraints, free apps are representative as they represent
75% of all Google Play Store apps and are downloaded more
often [31] than paid apps.

A second threat is represented by the fact that, in this
experiment we consider only one kind of hardware machine.
This choice is mainly guided by budget constraints related
to both time and available resources. Notwithstanding, the
used hardware is consumer-grade, hence we believe that
collected measures are representative of performances that
can be obtained on ordinary hardware. Moreover, it is
important to note that the AFP Instrumenter is deployed
in the AFP Server, whose hardware and software perfor-
mance can be far higher than the machine we used for this
experiment and can be easily scaled up if deployed in a
virtualized/containerized environment.

5.2 Experiment 2: Performance of AFP-enabled apps
Design – The goal of this experiment is to assess the per-
formance of the AFP-enabled apps at runtime (i.e., app X
in Figure 1). The main rationale behind this experiment is
to assess how the application of our AFP approach may
actually impact the performance of instrumented apps, thus
potentially impacting the overall user experience.

For this experiment, we selected 7 mobile apps from a
publicly available dataset composed of 2,443 open-source
Android apps that are freely distributed in the Google Play
store and whose source code is hosted on GitHub [32]; these
two conditions permitted us to have a dataset with apps
designed and developed as real projects with real users,
and to easily check that instrumented apps behave as the
original ones (we did this by a combination of source code
inspection and the addition of logging instructions in key
parts of the app). Among the 2,443 apps, we randomly
selected the 7 apps (see Table 1) among those requesting at
least one of the permissions considered for our experiments
(i.e., geolocation, camera and microphone access).

We executed the experiment by performing the follow-
ing steps for each app: (i) we defined one or two (depending
on the complexity of the app, see Table 1) common usage
scenarios that start from the main activity and end with
the complete stop of the app; (ii) we executed each usage
scenario, while measuring the CPU load and memory con-
sumption of the process of the app; (iii) we created a feature-
component mappings using the AFP Web application; (iv)
we instrumented the app via the AFP Instrumenter by
using the mapping defined in the previous step; (v) we

TABLE 1
Selected apps for study 2

ID Name Version Type Scenarios

a1 WordPress 5.6.1 Blog manager 2
a2 Ottawa Bus Fol-

lower
2.0.11 Bus-related utility 2

a3 Streetlight Seattle
Reporter

1.2.0 Citizen participa-
tion

2

a4 Local Weather 1.0.0.7 Weather 1
a5 Run Helper 1.3 Fitness tracker 1
a6 Selfie HD 1.1 Photo camera 1
a7 Flickr Uploader 2.3.2 Photo upload 1

executed and measured again each usage scenario on the
instrumented version of the app.

From a tooling perspective, we used (i) Mon-
keyRecorder12 for recording all the actions we manually
performed for each app during a pilot manual execution of
all the basic usage scenarios, (ii) a shell script using Android
monkeyrunner13 for replaying the previously recorded sce-
narios, and (iii) another shell script periodically executing
the Android top or dumpsys tools via the Android Debug
Bridge (ADB)14 for collecting the CPU load and memory
consumption of the app at runtime. All the shell scripts and
tools were executed from the same laptop of Experiment 1,
whereas the apps have been executed on an LG G3 855
(quad-core CPU at 2.5 GHz and 3 Gb of memory) running
Android 6.0.
Results – Collected measurements are presented in Figure 8.
For each app, we performed a comparison of both the
CPU load and memory consumption for its two versions
(i.e., original or instrumented) by using the Mann-Whitney
test [29] with α = 0.05, one-tailed. In all cases, we obtained a
p-value much larger than α, thus allowing us to confirm that
there is low difference in the medians of CPU and memory
consumption, with and without app instrumentation.
Discussion – From Figure 8 it is evident that both CPU load
and memory consumption of the original and instrumented
versions of each app are comparable, as confirmed by sta-
tistical tests. The results of this experiment give a positive
indication about the performance of AFP-based apps.

It is important to note that the focus is not on the
formal systematic assessment of the precision of the app
instrumentation (i.e., we do not have a formal proof that
instrumented apps do not crash in some corner cases); nev-
ertheless, we performed a manual assessment of stability of
the 7 apps in experiment 2 by performing a set of evaluation
runs, observing that the instrumented app conformed to the
expected behavior. To recap:

Performance of AFP-enabled apps are comparable to
those of regular apps.

Threats to validity – One common risk to validity of the ex-
periment is the threat that adopted feature-component map-

12. https://android.googlesource.com/platform/sdk/+/6db5720/
monkeyrunner/src/com/android/monkeyrunner/recorder/
MonkeyRecorder.java

13. http://developer.android.com/studio/test/monkeyrunner
14. http://developer.android.com/studio/command-line/adb.html

https://android.googlesource.com/platform/sdk/+/6db5720/monkeyrunner/src/com/android/monkeyrunner/recorder/MonkeyRecorder.java
https://android.googlesource.com/platform/sdk/+/6db5720/monkeyrunner/src/com/android/monkeyrunner/recorder/MonkeyRecorder.java
https://android.googlesource.com/platform/sdk/+/6db5720/monkeyrunner/src/com/android/monkeyrunner/recorder/MonkeyRecorder.java
http://developer.android.com/studio/test/monkeyrunner
http://developer.android.com/studio/command-line/adb.html

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 10

(a) CPU load of selected apps (percentage) (b) Memory consumption of selected apps (in Mb)

Fig. 8. Performance of selected apps: original (a) and instrumented (b)

pings and execution scenarios may not be representative of
real app usage. To mitigate this threat, as a preliminary step,
selected apps were examined by (i) analysing apps descrip-
tion in the Google Play store, (ii) manually inspecting their
source code, and (iii) performing a set of preliminary runs
while observing app behavior. Two different researchers
were involved in the definition of both artifacts: first they
were proposed by one and then verified to be representative
by a second one.

A second threat is represented by the limited amount of
apps involved in the experiment (7), a very small minority
of all apps available to mobile app users. Hence, results
might not generalize to other apps. Nonetheless, selected
apps have reasonably varied purposes (see Table 1), thus
partially mitigating the threat.

Finally, as for experiment 1, in this experiment we con-
sider only one kind of hardware machine for the server
and mobile device. As the hardware we used is likewise
consumer-grade, we believe that collected measures are
representative of those that can be obtained on ordinary
hardware.

5.3 Experiment 3: Usability and acceptance of AFP by
developers

Design – The goal of this experiment is to evaluate the
usability and acceptance of AFP by developers. For this
purpose, we conducted an on-line study, involving Android
developers, in which we asked them to build the feature-
component mappings for the apps they developed. We
focused on this aspect as it is the main effort required to
developers to make their app AFP-compliant (all the other
steps are automated). This experiment is composed of three
main phases:

1) Recruiting: we posted an announcement on pertinent
on-line discussion groups (i.e., Android developer fo-
rums, mailing lists) to enlist developers willing to take
part in the study. Each developer was asked to provide
(at least) one link to an app published on the Google
Play store, on which (s)he worked (either alone or in a
team).

2) Mapping: the participants who provided a working
link in the previous step were then invited to access a
web-based app containing: (i) the definitions of feature-
and level-based permissions, and (ii) the AFP web

editor for the feature-component mappings. The partic-
ipants were instructed to create the feature-component
mappings for one of their previously-linked apps, and
we collected the mappings defined by developers. We
kept track of the time required by each participant for
creating the feature-component mappings.

3) Evaluation: after completing the mapping, participants
were asked to complete an on-line evaluation question-
naire about AFP.

In order to encourage developers in participating to the
experiment, we informed them that, during the mapping
step, they did not have to manually input the activities of
their Android app, as we had preemptively loaded them
in the web editor after downloading and analyzing the
manifest file of each app collected in the recruiting step.

TABLE 2
Structure of the evaluation questionnaire used for developers

Evaluation goal Question
ID

Question text

Acceptance

q1
Is the definition of level-based and feature-
based permissions clear to you?

q2
Do you rate the definition of level-based and
feature-based Android permissions as useful?

q3
Are you willing to use feature- and level-
based permissions in your apps?

Usability s1-s10
As defined in the System Usability
Scale [33].

The structure of the evaluation questionnaire is shown
in Table 2. The acceptance part is composed of three closed
questions (q1 - q3) with possible answers ranging on a five-
point scale. For the usability part, we adopted the System
Usability Scale (SUS), a simple and widely-adopted scale
for assessing the usability of products and services [33], [34].
The SUS consists in a questionnaire composed of 10 items
(s1 - s10) and each item can be assessed by respondents
along a 5-levels Likert scale ranging from Strongly agree (4
points) to Strongly disagree (0 points). SUS is proved to be
a valuable, robust, and reliable evaluation tool and it corre-
lates well with other subjectives measures of usability [33],
[35].
Results – A total of 11 developers completed both the map-
ping definition and the evaluation questionnaire, providing

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 11

TABLE 3
Apps developed by participants of Experiment 3

Developer
ID

App ID Package Name Version Type Relevant resources # Features Mapping
time (s)

D1 A1 com.rubikssolutions.daily5sec 3.2 Video sharing Camera, Microphone 2 21
D2 A2 com.ambiensvr.mobile 0.9 Augmented reality Camera 4 924
D3 A3 fr.inria.es.electrosmart 1.6 Electromagnetic waves meter Location 8 337
D3 A4 ums.lovely.university 9.8.4 University management system Camera, Location 4 1809
D4 A5 com.digitech.foodel 1.9 Food delivery Camera, Location 22 1758
D5 A6 com.mobile.wabi tech.gadfly 2.2.9 Citizen participation Location 3 49
D6 A7 com.Jitendra93266.jitu.knowmovies 1.0 Movies database - 3 54
D7 A8 de.jw.mymensa 0.9.0 Menu viewer - 2 47
D8 A9 com.peaklens.ar 1.0.11 Augmented reality Camera, Location 7 455
D9 A10 com.yopapp.yop 1.9.4 Online marketplace Camera, Location 4 192
D10 A11 com.myoxygen.press.weaf 3.0 Aerospace news Location 4 61
D11 A12 ro.notnull.IdenticalFilesFinder 3.4.0 System management - 4 80

us with twelve mappings in total (one developer performed
the mapping construction for 2 apps). Developers partic-
ipating in the experiment are also quite heterogeneous,
both in terms of experience, number of developed apps,
and size of organization. Specifically, participants have an
average of 3.45 years of Android development experience
(standard deviation = 2.66) and their majority (5) developed
between 2 and 5 Android apps during their career, followed
by 2 developers who developed more than ten. For what
concerns organizations, the majority of developers work in
small organizations (i.e., with 2 to 10 members), but we have
also participants working in organizations with a number
of members between 2 and 10 and between 10 and 50. Finally,
six developers declared to be Satisfied with current Android
permissions, three declared to be Unsatisfied and two are
Unsure.

A breakdown of the apps submitted by the participants
is provided in Table 3. Minimum and maximum amount of
features defined by developers is 2 and 22, respectively. For
what concerns the time for creating the feature-component
mappings, developers took an average of 482.25 seconds,
i.e., 8.03 minutes (median = 136s, min = 21s, max = 1809s,
SD = 660s). Even in the worst case, the time required by
the participants to create the feature-activities mapping is
close to half an hour. We consider such amount of time
acceptable, considering that the definition of such mapping
is conducted only once for an app.

Figure 9 summarizes the distribution of answers for
questions q1, q2 and q3. When developers were asked about
whether they understood the concepts behind feature- and
level-based permissions (q1), only one developer answered
No, three answered Absolutely Yes and the remainder Yes. On
a similar note, when asked whether they consider feature-
and level-based permissions as useful (q2), answers were
two Absolutely Yes, five Yes, one Don’t know, two No and one
Absolutely No. Concerning whether they would be willing
to use the AFP permissions in their apps (q3) answers were
two Absolutely Yes, four Yes, two Don’t know, two No and
one Absolutely No. For all three questions median value of
answers is Yes.

Results of the usability part of the evaluation ques-
tionnaire are presented in Figure 10, where each column
of the heatmap represents the distribution of answers for
each of the ten statements that comprise SUS. The proce-

Fig. 9. Results about the acceptance of AFP by developers

dure described in the SUS guidelines [33] was applied to
normalize answers to each statement. For most statements,
answers provided by respondents are mostly agglomerated
towards the middle of the scale, with the exception of s3
and s4, skewed towards the upper and lower end of the
scale respectively. A mean SUS score of 49.77 was obtained
across all participants.
Discussion – When considering the answers to the accep-
tance part of the evaluation questionnaire (presented in Fig-
ure 9), we can see that almost all developers understood the
concepts required to be able to use feature- and level-based
permissions (q1). On a similar note, the majority of partic-
ipants considered feature- and level-based permissions as
useful (q2). Summarizing:

Feature- and level-based permissions are both under-
stood and deemed useful by developers.

Concerning their willingness to adopt the proposed per-
missions approach in their apps (q3 in Figure 9), the majority
of developers declared that they would be willing to adopt
it in their apps. Although the number of participants is

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 12

relatively limited, such results are encouraging. We can state
that:

The majority of the participants are willing to adopt
feature- and level-based permissions in their apps.

Focusing on answers to the usability part of the evalu-
ation questionnaire (shown in Figure 10), we can see that
answers are clustered towards the middle of the scale for
the majority of statements, revealing an acceptable usability.
Further confirmation is found in the obtained mean SUS
score (49.77) that, according to prior research [34], is to
be evaluated as Ok. Exceptions are statements s3 and s4.
Most participants are in agreement with the former, that
reads “I thought the system was easy to use”, confirming
that the process was not overly difficult. At the same time
developers felt in agreement with the latter: “I think that
I would need the support of a technical person to be able to
use this system”. Such results, and the fact that developers
are not always familiar with permission-related technical
aspects [36], encourages us to investigate in the future on
techniques to assist in (or even to automate) the definition
of feature-component mappings. Summarizing:

Developers positively evaluated the usability of the
AFP approach. Improvements can be made on making
the definition of the feature-component mappings more
straightforward from a technical perspective.

Threats to validity – Possible threats to the validity and
points of improvement for experiment 3 are as follows. The
number of participants in the experiment (11) represents a
very small minority of mobile app developers in the real
world, hence results might not generalize. This threat is
mitigated by the fact that developers who participated in
the experiment have varied years of experience, nationalities
and work in organizations of different size.

A second threat is represented by the limited number of
apps for which developers created the mappings. Thus, the
results of our study might potentially not generalize to other
apps. This threat is mitigated by the fact that submitted apps

Fig. 10. Frequency distribution of answers to SUS statements by devel-
opers

have very different purposes, provide different features, and
have been developed by different developers.

Finally, as the study has been conducted on-line, we
had no way to ascertain that participants fully understood
the task they were asked to complete. We mitigated this
potential threat by directly asking in the final questionnaire
whether developers had additional comments or doubts to
clarify with respect to AFP.

5.4 Experiment 4: Usability and acceptance of AFP by
end users
Design – The goal of this study is to evaluate usability
and acceptance of AFP from the end-user perspective. We
conducted an in-person study involving 47 participants.
This experiment is composed of three main phases:

1) Pre-study: each participant was given a short descrip-
tion about the goal of the experiment, together with
the definition of feature- and level-based permissions.
Demographic information was also collected.

2) First trial: each participant was asked to try out three
Android apps, employing either AFP or the current An-
droid permission system. An evaluation questionnaire
was given at the end of the trial.

3) Second trial: the participant was asked to repeat the
trial, this time employing the permission system that
was not used during the previous phase. Again, an
evaluation questionnaire was given at the end of the
trial.

During each trial, participants were allowed to freely
explore the given apps, while being monitored by one
researcher that provided assistance, when needed. The re-
searcher ensured that a minimal set of steps, namely an
execution scenario, was executed for each app, to guarantee
that participants were properly familiar with the apps and
the underlying permissions systems before filling out the
questionnaires. Each execution scenario was defined a priori
and focusses on one of the app main functionalities. An
example of execution scenario for app A10 is given in
Figure 11: in order to sell an object on the marketplace, users
have to (a) tap on the “sell now” button, (b) take a picture
of the object with the device camera (granting the required
permissions if needed) and (c) fill out remaining listing
data before submitting. Users were asked to complete the
same execution scenarios between the two trials although
inevitably some middle steps differed, i.e., users had to
grant permissions at runtime under Android permissions as
opposed to app startup with AFP. All trials were performed
on a device specifically made available, namely a LG G3
running Android 6.0.

In order to keep the experiment as representative as
possible, we decided to reuse three of the apps for which
real developers provided a mapping in Experiment 3. The
app selection was performed with the goal of having at
least one app making use of each of the device resources
currently adopted by the current implementation of AFP
(i.e., Camera, Microphone, and Location). Unfortunately, we
could not successfully instrument app A1, the only one in
our dataset that uses the microphone, because it relies on
Java reflection (a language construct traditionally hard to
deal with by approaches relying on static analysis [37]).

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 13

(a) (b) (c)

Fig. 11. Example of execution scenario for the com.yopapp.yop app:
to sell an object the user (a) taps on the ”sell now” button, (b) takes a
picture and (c) fills out listing details

Hence, we discarded it and selected an alternative app, thus
ending with apps A3, A10, A11 in our final app selection.

A breakdown of the structure of the evaluation ques-
tionnaires provided to users is shown in Table 4. It can be
divided into three main parts, according to the different goal
of each one: the first part comparatively evaluates AFP and
Android trustability, the second one evaluates the acceptance
of AFP and the last one assesses usability of AFP.

TABLE 4
Structure of the evaluation questionnaire for end users

Evaluation
goal

Evaluated
for

Question
ID

Question text

Trustability
AFP vs

Android

Q1
How do you judge the way the app asked for
permissions?

Q2

How likely are you to use the app on your
device, considering the permissions you were
asked for?

Acceptance AFP

Q3
Is the definition of feature-based permissions
clear to you?

Q4
Is the definition of level-based permissions
clear to you?

Q5
Do you rate feature-based permissions as use-
ful?

Q6 Do you rate level-based permissions as use-
ful?

Usability AFP S1-S10
As defined in the System Usability
Scale [33].

The first part of the questionnaire (Trustability) consists
of two questions (Q1, Q2). It was filled by participants at
the end of both the second and the third phase of the ex-
periment. The second part of the questionnaire (Acceptance)
contains four questions (Q3 -Q6) and it was filled by partici-
pants after completing the third phase of the experiment. All
answers to questions Q1 – Q6 range on a five-point Likert
scale.

Also the third part of the questionnaire (i.e., Usability)
was filled by participants after completing the third phase
of the experiment. In this part, we relied again on the System
Usability Scale (S1 - S10). At the end of the questionnaire,
open comments were collected from the participants.
Results – Professions and backgrounds of participants are

varied and include students, shop assistants, mechanical
engineers, lawyers, etc. Participants were mostly male (68%)
and and the mode of their age is Between 21 and 30 years old.
Although not perfectly balanced, we consider the group of
participants to be a good sample of the general smartphone
users population, itself skewed towards younger ages and
males [38]. The mean self-assessed knowledge of Android is
3.43 on a 1-5 scale (1.17 standard deviation). Roughly half of
the participants (24/47) tried out the apps with the Android
permission system as first, and with AFP as second. The
opposite order was adopted for the others.

Table 5 provides the breakdown of the permission pref-
erences configured by participants during the experiment.
Overall, preferences were varied, with each access level
being selected by at least one participant for all features.
On average, participants required 17.27 seconds to configure
their permission preferences for A3, 36.45 seconds for A10

and 13.63 seconds for A11 (with a standard deviation of
13.21, 25.08 and 12.64 seconds respectively).

TABLE 5
Breakdown of end users privacy preferences

App µ Configuration
time (σ)

Feature Resource Access level (%)

A3 17.27s (13.21s) F1 Location

Full access: 19 (40%)
Region only: 6 (13%)
City only: 17 (36%)
Deny: 5 (11%)

A10 36.45s (25.8s)

F2 Camera Allow: 38 (81%)
Deny: 9 (19%)

F3 Location

Full access: 4 (9%)
Region only: 17 (36%)
City only: 23 (49%)
Deny: 3 (6%)

F4 Location

Full access: 5 (11%)
Region only: 20 (43%)
City only: 18 (38%)
Deny: 4 (9%)

A11 13.63s (12.64s) F5 Location

Full access: 9 (19%)
Region only: 15 (32%)
City only: 10 (21%)
Deny: 13 (28%)

Figure 12 summarizes the distribution of answers for
questions Q1 and Q2 for both AFP and the Android per-
mission system (recall that participants were asked these
questions twice). For both questions, users provided more
favourable answers for AFP, with a median value of
Trustable for Q1 and Likely for Q2, as opposed to Android
which achieved a median of Neutral for both questions. Ob-
viously, differences in answers are statistically significant,
which we confirmed by performing the two-tailed Mann-
Whitney U-test [39]. We obtained a p-value of 7.623e−08 for
Q1 and 4.802e−05 for Q2, thus rejecting the null hypoth-
esis that the distributions of the answers about Android
and AFP are equal. Figure 13 provides a breakdown of
answers to Q1 and Q2 by self-declared Android knowledge
of participants. For both questions, AFP achieved more
favourable answers even for participants with a lower level
of knowledge.

Answers for the Acceptance part of the questionnaire
(i.e., Q3, Q4, Q5 and Q6) are summarized in Figure 14.
The answers are skewed towards the positive part of the

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 14

(a) Perceived trustability (Q1) (b) Likeliness to use the app (Q2)

Fig. 12. Perceived trustability of Android and AFP permission systems w.r.t. the way the app asked permissions (Q1) and how likely the participant
is to use the app (Q2)

(a) Perceived trustability (Q1) (b) Likeliness to use the app (Q2)

Fig. 13. Perceived trustability (Q1) and likeliness to use the app w.r.t. the way the app asked permissions (Q2) by self-declared Android knowledge

scale and the median value is Absolutely yes for most of
them, with the only exception of Q5 for which the median
value is Yes. Figure 15 provides an overview of answers
to the same questions by self declared Android knowledge
of participants. For all levels of knowledge, the majority of
answers fall in the upper end of the scale.

Results of the usability evaluation are shown in Fig-
ure 17. Each column of the heatmap presents the frequency
distribution of answers for one of the ten SUS statements.
The procedure described in the SUS guidelines [33] was
applied to normalize answers to each statement. For all ten
statements, participants provided mostly positive answers
with the total amount of negative ones being less than 15%
for all statements. A mean SUS score of 78.19 was obtained
across all participants. Figure 16 goes deep in the perceived
usability of AFP with respect to self-declared Android
knowledge (note that, for odd numbered statements, higher
is better; the opposite is true for even numbered ones). For
all statements, no major differences can be observed in the

distribution of the answers along knowledge levels.

Discussion – From the collected users privacy preferences
(see Table 5), we can notice that choices are varied and, for
all features, each level was selected by at least a minority
of users. This variability in choices reveals that participants
indeed took advantage of the added control provided by
feature- and level-based permissions. Such data substanti-
ates the intuition that users have diverse privacy concerns
that cannot really be satisfied by one-size-fits-all approaches,
like the current Android permission model. Hence, we can
infer that:

Feature- and level-based permissions allow for an expe-
rience more tailored to individual privacy preferences.

Still concerning users choices, it is worth noting that,
when possible, users favoured more restricted access levels
and seldom provided full location access. An exception
is represented by feature F1, for which full access is the

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 15

Fig. 14. Acceptance of AFP by end users in terms of: clarity of the
definitions (Q3 and Q4) and usefulness (Q5 and Q6) of feature-based
and level-based permissions).

consensus choice. During the execution of the experiment,
we observed that users believed that full access was strictly
necessary for performing this feature, thus explaining such
difference. Consequently, we can state that:

When possible, most users choose levels that disclose a
restricted amount of data.

From the answers to questions Q1 and Q2 (see Fig-
ure 12), we can point out that users generally felt more
secure when employing AFP and praised the added control
over shared personal data provided by it. Figure 13 provides
an indication that this preference towards AFP is constant
across varying levels of Android knowledge. Such consider-
ations are also supported by some of the comments collected
during the evaluation questionnaire: one participant stated
that “(Between the two systems) I prefer AFP as I have more
control on permissions and I feel more secure”, while another
participant pointed out that “as a user, with AFP I am more
aware on how an app uses my phone”. This leads us to the
following reflection point:

Users feel more secure and are more willing to use apps
on their smartphone when using feature- and level-
based permissions.

Figure 14 outlines the distribution of answers to the
acceptance part of the evaluation questionnaire (questions
Q3 through Q6). The definitions of feature- and level-based
permissions were both well understood and deemed useful
by users, although the former achieved worse answers re-
garding its perceived usefulness (Q5). We conjecture this dif-
ference is due to the fact that the perceived benefit of level-
based permissions is more immediate to users. Figure 15
suggests that, also in the case of acceptance, the distribution
of the answers is unaffected by the users’ knowledge of

Android. Further confirmation of the perceived usefulness
can be found in the open comments: one participant stated
“I appreciated the greater choice of options provided by AFP”;
a second one noted that “(Android) permission pop-ups are
misleading and enforce a binary choice. I appreciated AFP’s level-
based permissions”. In conclusion:

Feature- and level-based permissions are both well un-
derstood and deemed useful by end users, although the
usefulness of the latter is more immediate to them.

Regarding the results of the usability evaluation, accord-
ing to prior research [34], the achieved mean SUS score
(78.19) is to be interpreted as a Good level of usability
(see Figure 17). Focusing on the distribution of answers
for each statement, positive answers are the majority for all
statements, even for users with a limited knowledge of the
Android platform (see Figure 16). Nonetheless some points
of improvement can be identified. Statements S1, S2, S3 and
S5 achieved a comparatively lower amount of maximum
score answers, revealing that some users did experience
some difficulties while using the system. Investigating the
comments left by participants, we noticed that some users
would prefer to grant feature- and level-based permissions
at runtime. In particular, one user noted “I would like to grant
permissions when needed. Configuring permissions preemptively
could take too long for some apps”. To address this issue, in the
future we plan to investigate alternative ways to elicit user’s
privacy preferences (see Section 8). On the positive side,
for S10, mostly maximum score answers were collected,
hence highlighting that participants did not consider the
amount of new notions that they had to learn as excessive.
Summarizing:

AFP usability from the end-users perspective is evalu-
ated as Good.

Threats to validity – There are several threats and points
of improvement for Experiment 4. Although users were
instructed to act as they would do with their own smart-
phone, they were still performing the trials in a controlled
environment, potentially different from the normal. This
means that participant activities and answers may differ
from what can be observed in the real world. As future
work, we will mitigate this potential threat to validity by
performing the experiment via an app that users can install
on their own smartphone in order to monitors the AFP-
enabled apps during their usage.

Despite our efforts to have a balanced and unbiased set
of participants, we ended up with a group of relatively
young people (age between 21 and 30 years old) and with
a majority of male participants (32 males as opposed to
15 females). Moreover, we are aware that the sample size
of this experiment (47 participants) is limited with respect
to all Android smartphone users today. We mitigated this
potential threat by contacting participants with different
backgrounds and professions, different experience about
the Android platform, and by letting them interact with
the real apps instead of Android emulators or simulated
environments.

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 16

Fig. 15. Acceptance of AFP Q3-Q6 by self-declared Android knowledge

Fig. 16. Usability of AFP (S1-S10) by self-declared Android knowledge. For odd numbered statements higher is better. For even numbered
statements lower is better.

Fig. 17. Frequency distribution of answers to SUS statements by users

Another possible threat is represented by the limited
amount of apps used to perform trials in the study. Hence,
results of our study might potentially not generalize to
other apps. We mitigated this threat by selecting three apps
with very different purposes and features, thus collecting
data on users behavior in varied scenarios. Additionally,
participants were not familiar with selected apps in ad-
vance. Hence, their behavior during the trial might properly
resemble the one of a user that runs a freshly installed app
for the first time.

6 LIMITATIONS AND FUTURE WORK

The proposed approach suffers a number of limitations that
we plan to address in the future. At the time of writing, AFP
only permits the specification of PolicyItems that reference
a single resource. Our plan is to enhance the permission
model by introducing consistency-checking of policies and

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 17

reasoning on multiple resources (e.g., do not allow access to
contacts book if the app also requests Internet access).

As previously discussed in Section 3.6, our current im-
plementation of AFP is fully contained in the application
layer of the Android stack. Our prototype implementation
was developed with the main goal of assessing the per-
ception of users on the proposed feature- and level-based
permissions. We are aware that a full market-scale adoption
requires a more tightly-coupled integration with the lower
levels of the Android stack. In this direction, the integration
of AFP with existing works on kernel-space security [40],
[41], [42], [43], [44] would be beneficial.

Furthermore, API wrappers are currently developed on
a per-API basis. In the future, we plan on investigating
possible categorizations of Android APIs, in order to group
together similar ones, hence reducing the effort required to
develop new wrappers. As these groupings must be well
understood by both end users and developers, we plan on
conducting new experiments to assess their effectiveness.

As most of the approaches in the literature using static
analysis, the use of reflection, self-decrypting code, or ob-
fuscation techniques in general challenge our approach. To
address this issue, we are currently investigating a hybrid
approach combining our static analysis with dynamic flow
analysis. We have preliminary evidence that such a hybrid
approach may result in a valid and viable compromise
towards mitigating this challenge, as well as known issues
of bytecode rewriting [45].

Another future work concerns assisting end users in the
configuration of flexible-permissions. Since runtime permis-
sions expose context, which can help users in making their
decision, the extension would require to understand how
the context can be suitably extracted and presented to users
during the apps configuration phase, or even leveraged to
automatically configure permissions without user interven-
tion.

Another possible enhancement concerns the enactment
of a greater integration with the Google Play Store, in order
to favor adoption by end-users and developers. This can be
achieved by using Google own APIs that allow third-party
services to directly publish mobile apps to the Google Play
Store.

Security of the AFP Server can also be enhanced imple-
menting an authorization mechanism. OAuth215, an open
communication protocol through which third-party service
can securely manage authorized access to sensitive data, can
be used for this purpose.

We are currently defining a procedure for (semi-) auto-
matically extracting the features provided by an Android
app from its binary or source code.

7 RELATED WORK

Android permissions and their usage have attracted consid-
erable research interest over the years. In [3], Felt et al. report
on the usability study they performed to evaluate whether
Android users pay attention and understand permissions
upon installing apps. The outcome of the study is that
Android users make security and privacy decisions with a

15. https://oauth.net/2/

minimal comprehension of what the implications of their
decisions will be.

The problem addressed in our paper falls into the class of
problems identified in [3], and from there it takes the move.
The authors of [7] investigated whether users are willing
to pay premiums for privacy: results suggest that many
smartphone users are concerned with their privacy and are
willing to pay premiums for apps that are less likely to
request access to personal information. Similar conclusions
are presented by Kelly et al. in an independent study [15]
that, in the form of a series of semi-structured interviews,
was aimed at understanding user’s attention to and com-
prehension of permissions screens displayed during app’s
installation. Their findings highlight that, while permissions
displays are generally viewed and read, mostly often they
are not understood by Android users.

Recent work has focused on studying the new Android
runtime permission system. In [8], we identified points of
possible improvement in the new system analyzing mobile
apps user reviews. In [46], Peruma et al. conducted an in-
person study to investigate user perception of the previous,
current and a new proposed system. Among their findings
there is the indication that current system does not make
users feel more secure than the old one.

Andriotis et al. studied users’ adaptation to the new
runtime permission model [47], collecting and analyzing
anonymous data from 50 participants. Although their anal-
ysis indicates that users adapted positively to the new
model, participants of their study hardly ever utilized the
newer capabilities that allow a more efficient control over
resources used by applications [17]. In [48], the same authors
suggest that users should be informed about the resources
needed by an app to provide its core functionalities before
installation.

Many approaches aim to offer a finer-grade control over
permissions using a wide array of strategies [26], [49],
[50], [51], [52]. In particular, Mockdroid [26], TISSA [51]
and SHAMDROID [49] allow users to restrict access to
a resource by providing mocked information in place of
real one whenever access to the resource is attempted.
The evaluation presented shows that the majority of apps
are able to continue execution when injected with mocked
information but their usefulness might be greatly reduced
for the end user. In [50], Jeon et al. define some strategies for
developing fine-grained variants of Android permissions
and implement Dr. Android, a prototype tool that allows to
retrofit existing Android apps to make use of fine-grained
permissions. Proposed by Nauman et al., Apex [52] allows
a user to selectively grant permissions to apps based on
runtime contextual information, such as the location of the
device or the number of times a resource has been previ-
ously used. To our knowledge, AFP is the first approach that
allows users to specify permissions on a per-feature basis.

SmarPer [53] couples contextual information with
machine learning techniques for automatic permission-
granting, mimicking users’ decision while removing the dis-
ruption of permission request pop-ups. Analogously, Wije-
sekera et al. investigated the effectiveness of such techniques
on a larger scale [54], [55], to assess current performance
and practical limitations in actual implementations. Even
though not directly comparable to our approach, we plan to

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 18

investigate how to integrate similar automatic permission
granting mechanisms in AFP in order to further assist end
users during permissions configuration.

Many static analysis approaches for Android apps exist
in the literature [56], [57], [58], [59]. Most of the approaches
have been aimed at the detection of malware apps, analysis
of how control [56] or sensitive data [57], [58] flows through
Android apps to identify vulnerable or suspicious behavior,
etc. AFP instead aims at addressing issues perceived by end
users in the current permission systems. Shen et al. in [59]
propose an extension of Android permissions named “Flow
Permissions”, directly inferred from an existing app using
static analysis techniques, whose aim is to inform users
on the existence of data-flows that could potentially leak
sensitive information to the outside. Unlike our approach,
permissions are statically analyzed for informative purposes
only and not for the purpose of actually be enforced at
runtime.

Aurasium [40] is an application-hardening service that
permits to attach user-level sandboxing and policy enforce-
ment code to arbitrary Android applications. Similarly to
our approach, Aurasium employs repackaging to bypass the
need of modifying the Android operating system. However,
differently from AFP, permissions are still granted to the
whole application monolithically.

More closely related to our approach is AWare [60], by
Petracca et al. Similarly to AFP, AWare limits the scope of
granted permissions. Unlike our approach, where scope is
limited by features boundaries, AWare binds permissions
to specific user inputs. Evaluated experimentally, AWare
was found to be effective as an additional layer of defense
against untrusted applications with potentially malicious
purposes, while limiting the explicit authorization over-
head. COMPAC [41] extends Android permission model in
order to allow developers and users to assign only a subset
of an application’s permissions to some of the application’s
components. Unlike AFP, COMPAC requires modifications
to the Android framework and kernel.

The work in [61] proposes a static taint analysis method
to identify in Android sources what are the sensitive APIs
through which sensitive data flows. Although not strictly
related to our approach, the idea of identifying data flows
that originate from sensitive sources together with the ex-
traction of data related to app features [62], [63], [64] would
permit our approach to (semi) automatically map features
to the Android components that implement them.

In [43], the authors systematically studied 1,139 Android
kernels and all the recent critical vulnerabilities. The au-
thors propose KARMA, an adaptive live patching system
for Android kernels. To protect kernel vulnerabilities from
exploits, KARMA leverages a multi-level adaptive patching
model that permits to filter malicious inputs by placing
patches at multiple levels in the kernel. Thousands of An-
droid devices are seamlessly supported. Authors of Insta-
Guard [44] instead propose a new approach that allows for
instant deployment of hot-patches for mobile devices. The
kernel vulnerabilities identified in [43], [44], together with
the related kernel-level considerations therein, would be of
undoubted interest towards a native low-level integration of
the AFP approach directly in the Android operating system.

Researchers have investigated the effectiveness of nudg-

ing, i.e., the act of assisting individuals’ privacy and security
choices with soft paternalistic interventions that drive users
toward more beneficial options [65]. Integrating such tech-
niques into AFP can potentially be beneficial for end users.
In [66] Almuhimedi et al. report on a study that evaluates
the benefits of giving users an app permission manager and
sending them nudges intended to raise their awareness of
the data collected. Nudges proved to be beneficial, with
95% of participants reassessing their permissions, and 58%
of them restricting some. In our approach, the role of per-
missions manager is performed by the AFP App. In [67],
Balebako et al. performed a series of experiments to examine
how timing impacts the salience of smartphone app privacy
notices. Notices displayed during app use showed signifi-
cantly increased users’ recall rates over notices displayed in
the app store. Liu [68] et al. implemented and evaluated
a Personalized Privacy Assistant (PPA) to automatically
recommend permissions to users based on prior answers
to a small set of questions. In their experiments, 78.7%
of the recommendations were adopted by users and the
PPA was perceived as useful and usable. Introducing a
similar assistant in the AFP App can ease the permission
configuration process for end users.

8 CONCLUSIONS

In this paper, we have presented an approach aimed at
overcoming some limitations of the current Android per-
mission model. At the core of the proposed approach lies a
new flexible permission model for Android apps in which
end users can grant and negotiate the level of each single
permission of a mobile app, on a per feature-basis.

The new permission model is supported by an infras-
tructure comprising three main components: a library in-
ternal to the apps enacting the approach at runtime; a
stand-alone mobile app that allows end users to configure
and negotiate at any time the permissions for each app on
their devices; a web-based server for allowing developers to
analyze their own mobile apps, and enhance them with the
new flexible permission system with very low effort.

Evaluation of proposed approach has been conducted by
designing, conducting, and reporting on four independent
experiments aimed at empirically investigating key aspects
of it: performance of the instrumenter, performance at run-
time of instrumented apps, usability and acceptance of the
approach for both end users and developers. Results are
promising and provide confidence in the approach.

REFERENCES

[1] Adam Lella, Andrew Lipsman, Ben Martin, “The Global Mobile
Report: How Multi-Platform Audiences and Engagement Com-
pare in the US, Canada, UK and Beyond,” 2015, comsCore white
paper.

[2] University of Alabama at Birmingham Online Masters in
Management Information Systems, “The Future of Mobile
Application,” 2014, http://businessdegrees.uab.edu/resources/
infographic/the-future-of-mobile-application/.

[3] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wag-
ner, “Android permissions: User attention, comprehension, and
behavior,” in Proceedings of the Eighth Symposium on Usable Privacy
and Security, 2012, pp. 3:1–3:14.

http://businessdegrees.uab.edu/resources/infographic/the-future-of-mobile-application/
http://businessdegrees.uab.edu/resources/infographic/the-future-of-mobile-application/

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 19

[4] S. Chitkara, N. Gothoskar, S. Harish, J. I. Hong, and Y. Agarwal,
“Does this app really need my location?: Context-aware privacy
management for smartphones,” Proceedings of the ACM on Interac-
tive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3, p. 42,
2017.

[5] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sun-
daresan, M. Allman, C. Kreibich, and P. Gill, “Apps, trackers,
privacy, and regulators: A global study of the mobile tracking
ecosystem,” 2018.

[6] M. E. Kummer and P. Schulte, “When private information settles
the bill: Money and privacy in google’s market for smartphone
applications,” 2016.

[7] A. P. F. Serge Egelman and D. Wagner, “Choice architecture and
smartphone privacy: There’s a price for that,” in The Economics of
Information Security and Privacy, 2013, pp. 211–236.

[8] G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi,
“An investigation into android run-time permissions from the end
users’ perspective,” 2018.

[9] Z. Fang, W. Han, and Y. Li, “Permission based android security:
Issues and countermeasures,” computers & security, vol. 43, pp.
205–218, 2014.

[10] Y. Zhauniarovich and O. Gadyatskaya, “Small changes, big
changes: an updated view on the android permission system,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2016, pp. 346–367.

[11] M. Madden, L. Rainie, K. Zickuhr, M. Duggan, and A. Smith,
“Public perceptions of privacy and security in the post-snowden
era,” Pew Research Center, vol. 12, 2014.

[12] “ICT Leit Work Programme 2018-2020, 13
November 2018,” 2018. [Online]. Avail-
able: http://ec.europa.eu/research/participants/data/ref/
h2020/wp/2018-2020/main/h2020-wp1820-leit-ict en.pdf

[13] P. Bourque, R. E. Fairley et al., Guide to the software engineering body
of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society
Press, 2014.

[14] G. L. Scoccia, I. Malavolta, M. Autili, A. Di Salle, and P. In-
verardi, “User-centric android flexible permissions,” in Software
Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on. IEEE, 2017, pp. 365–367.

[15] P. G. Kelley, L. F. Cranor, and N. Sadeh, “Privacy as part of the app
decision-making process,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2013, pp. 3393–3402.

[16] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and
D. Wetherall, “A conundrum of permissions: Installing appli-
cations on an android smartphone,” in Proceedings of the 16th
International Conference on Financial Cryptography and Data Security,
2012.

[17] P. Andriotis, G. Stringhini, and M. A. Sasse, “Studying users’ adap-
tation to android’s run-time fine-grained access control system,”
Journal of information security and applications, vol. 40, pp. 31–43,
2018.

[18] S. Motiee, K. Hawkey, and K. Beznosov, “Do windows users follow
the principle of least privilege?: Investigating user account control
practices,” in Proceedings of the Sixth Symposium on Usable Privacy
and Security, 2010, pp. 1:1–1:13.

[19] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale
field study of browser security warning effectiveness.” in USENIX
security symposium, vol. 13, 2013.

[20] R. Böhme and J. Grossklags, “The security cost of cheap user
interaction,” in Proceedings of the 2011 New Security Paradigms
Workshop. ACM, 2011, pp. 67–82.

[21] N. S. J. Lin, B. Liu and J. I. Hong, “Modeling users’ mobile app
privacy preferences: Restoring usability in a sea of permission
settings,” in Symposium On Usable Privacy and Security (SOUPS),
2014, pp. 199–212.

[22] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot - a java bytecode optimization framework,” in
Proceedings of the 1999 Conference of the Centre for Advanced Studies
on Collaborative Research, 1999, pp. 13–.

[23] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: Con-
verting android dalvik bytecode to jimple for static analysis with
soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, 2012, pp. 27–38.

[24] “Android developers,” http://developer.android.com/training/
permissions/requesting.html.

[25] Z. Fang, W. Han, D. Li, Z. Guo, D. Guo, X. S. Wang, Z. Qian, and
H. Chen, “revdroid: Code analysis of the side effects after dynamic

permission revocation of android apps,” in Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security.
ACM, 2016, pp. 747–758.

[26] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid:
Trading privacy for application functionality on smartphones,” in
Proceedings of the 12th Workshop on Mobile Computing Systems and
Applications, 2011, pp. 49–54.

[27] A. P. Felt, S. Egelman, and D. Wagner, “I’ve got 99 problems, but
vibration ain’t one: A survey of smartphone users’ concerns,” in
Proceedings of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, ser. SPSM ’12, 2012, pp. 33–44.

[28] P. H. Chia, Y. Yamamoto, and N. Asokan, “Is this app safe?: A
large scale study on application permissions and risk signals,” in
Proceedings of the 21st International Conference on World Wide Web,
ser. WWW ’12, 2012, pp. 311–320.

[29] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering, ser. Computer
Science. Springer, 2012.

[30] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “Hybrid Mobile
Apps in the Google Play Store: An Exploratory Investigation,”
in Proceedings of the 2nd International Conference on Mobile Software
Engineering and Systems (MobileSoft 2015). Institute of Electrical
and Electronics Engineers (IEEE), 2015, pp. 56–59.

[31] I. Gartner, “Gartner says free apps will account for nearly 90
percent of total mobile app store downloads in 2012,” 2012,
http://www.gartner.com/newsroom/id/2153215.

[32] T. Das, M. Di Penta, and I. Malavolta, “A quantitative and qual-
itative investigation of performance-related commits in android
apps,” in Software Maintenance and Evolution (ICSME), 2016 IEEE
International Conference on. IEEE, 2016, pp. 443–447.

[33] J. Brooke et al., “Sus-a quick and dirty usability scale,” vol. 189, no.
194. London–, 1996, pp. 4–7.

[34] A. Bangor, P. T. Kortum, and J. T. Miller, “An empirical evaluation
of the system usability scale,” vol. 24, no. 6. Taylor & Francis,
2008, pp. 574–594.

[35] J. Kirakowski and M. Corbett, “Sumi: The software usability
measurement inventory,” British journal of educational technology,
vol. 24, no. 3, pp. 210–212, 1993.

[36] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and L. F. Cranor, “The
privacy and security behaviors of smartphone app developers,”
2014.

[37] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Tam-
ing reflection: Aiding static analysis in the presence of reflection
and custom class loaders,” in Proceedings of the 33rd International
Conference on Software Engineering. ACM, 2011, pp. 241–250.

[38] A. Smith, “Smartphone ownership–2013 update,” Pew Research
Center: Washington DC, vol. 12, p. 2013, 2013.

[39] G. W. Corder and D. I. Foreman, Nonparametric statistics: A step-by-
step approach. John Wiley & Sons, 2014.

[40] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in Presented as part of the
21st {USENIX} Security Symposium ({USENIX} Security 12), 2012,
pp. 539–552.

[41] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac:
Enforce component-level access control in android,” in Proceedings
of the 4th ACM conference on Data and application security and privacy.
ACM, 2014, pp. 25–36.

[42] A. Dawoud and S. Bugiel, “Droidcap: Os support for capability-
based permissions in android,” 2019.

[43] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
android kernel live patching,” in 26th Security Symposium USENIX,
2017, pp. 1253–1270.

[44] Y. Chen, Y. Li, L. Lu, Y. Lin, H. Vijayakumar, Z. Wang, and X. Ou,
“Instaguard: Instantly deployable hot-patches for vulnerable sys-
tem programs on android,” in 25th Annual Network and Distributed
System Security Symposium, NDSS, 2018.

[45] H. Hao, V. Singh, and W. Du, “On the effectiveness of api-level
access control using bytecode rewriting in android,” in Proceedings
of the 8th ACM SIGSAC symposium on Information, computer and
communications security. ACM, 2013, pp. 25–36.

[46] A. Peruma, J. Palmerino, and D. E. Krutz, “Investigating user
perception and comprehension of android permission models,”
in Proceedings of the 5th International Conference on Mobile Software
Engineering and Systems. ACM, 2018, pp. 56–66.

[47] P. Andriotis, M. A. Sasse, and G. Stringhini, “Permissions snap-
shots: Assessing users’ adaptation to the android runtime permis-

http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
http://ec.europa.eu/research/participants/data/ref/h2020/wp/2018-2020/main/h2020-wp1820-leit-ict_en.pdf
http://developer.android.com/training/permissions/requesting.html
http://developer.android.com/training/permissions/requesting.html
http://www.gartner.com/newsroom/id/2153215

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 20

sion model,” in Information Forensics and Security (WIFS), 2016 IEEE
International Workshop on. IEEE, 2016, pp. 1–6.

[48] P. Andriotis, S. Li, T. Spyridopoulos, and G. Stringhini, “A com-
parative study of android users’ privacy preferences under the
runtime permission model,” in International Conference on Human
Aspects of Information Security, Privacy, and Trust. Springer, 2017,
pp. 604–622.

[49] L. Brutschy, P. Ferrara, O. Tripp, and M. Pistoia, “Shamdroid:
Gracefully degrading functionality in the presence of limited
resource access,” in Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2015, pp. 316–331.

[50] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S.
Foster, and T. Millstein, “Dr. android and mr. hide: Fine-grained
permissions in android applications,” in Proceedings of the Second
ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, 2012, pp. 3–14.

[51] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on android),” in Proceedings of
the 4th International Conference on Trust and Trustworthy Computing,
2011, pp. 93–107.

[52] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on Informa-
tion, Computer and Communications Security, 2010, pp. 328–332.

[53] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and
J.-P. Hubaux, “Smarper: Context-aware and automatic runtime-
permissions for mobile devices,” in Security and Privacy (SP), 2017
IEEE Symposium on. IEEE, 2017, pp. 1058–1076.

[54] P. Wijesekera, A. Baokar, L. Tsai, J. Reardon, S. Egelman, D. Wag-
ner, and K. Beznosov, “The feasibility of dynamically granted
permissions: Aligning mobile privacy with user preferences,” in
Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017,
pp. 1077–1093.

[55] P. Wijesekera, J. Reardon, I. Reyes, L. Tsai, J.-W. Chen, N. Good,
D. Wagner, K. Beznosov, and S. Egelman, “Contextualizing privacy
decisions for better prediction (and protection),” in Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, 2018, p. 268.

[56] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” SIGPLAN Not., vol. 49, no. 6, pp. 259–269, 2014.

[57] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android applications,” 2009.

[58] W. Huang, Y. Dong, A. Milanova, and J. Dolby, “Scalable and
precise taint analysis for android,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, 2015, pp.
106–117.

[59] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhandapani,
E. J. Lehner, S. Y. Ko, and L. Ziarek, “Information flows as
a permission mechanism,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, 2014, pp.
515–526.

[60] G. Petracca, A.-A. Reineh, Y. Sun, J. Grossklags, and T. Jaeger,
“Aware: Preventing abuse of privacy-sensitive sensors via oper-
ation bindings,” in 26th USENIX Security Symposium, 2017, pp.
379–396.

[61] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden, “Mining apps for abnormal usage
of sensitive data,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1, 2015, pp. 426–436.

[62] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
MSR for app stores,” in 9th IEEE Working Conference of Mining
Software Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland,
2012, pp. 108–111.

[63] Y. Guo, Y. Li, Z. Yang, and X. Chen, “What’s inside my app?:
understanding feature redundancy in mobile apps,” in Proceedings
of the 26th Conference on Program Comprehension. ACM, 2018, pp.
266–276.

[64] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong, “Understanding
the purpose of permission use in mobile apps,” ACM Transactions
on Information Systems (TOIS), vol. 35, no. 4, p. 43, 2017.

[65] A. Acquisti, I. Adjerid, R. Balebako, L. Brandimarte, L. F. Cranor,
S. Komanduri, P. G. Leon, N. Sadeh, F. Schaub, M. Sleeper et al.,
“Nudges for privacy and security: Understanding and assisting

users? choices online,” ACM Computing Surveys (CSUR), vol. 50,
no. 3, p. 44, 2017.

[66] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti,
J. Gluck, L. F. Cranor, and Y. Agarwal, “Your location has been
shared 5,398 times!: A field study on mobile app privacy nudg-
ing,” in Proceedings of the 33rd annual ACM conference on human
factors in computing systems. ACM, 2015, pp. 787–796.

[67] R. Balebako, F. Schaub, I. Adjerid, A. Acquisti, and L. Cranor,
“The impact of timing on the salience of smartphone app privacy
notices,” in Proceedings of the 5th Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices. ACM,
2015, pp. 63–74.

[68] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang,
N. Sadeh, Y. Agarwal, and A. Acquisti, “Follow my recommen-
dations: A personalized privacy assistant for mobile app per-
missions,” in Twelfth Symposium on Usable Privacy and Security
({SOUPS} 2016), 2016, pp. 27–41.

[69] L. Jedrzejczyk, B. A. Price, A. K. Bandara, and B. Nuseibeh,
“On the impact of real-time feedback on users’ behaviour in
mobile location-sharing applications,” in Proceedings of the Sixth
Symposium on Usable Privacy and Security. ACM, 2010, p. 14.

Gian Luca Scoccia received his PhD from the
Gran Sasso Science Institute, Italy, in 2019. Cur-
rently is a post-doc at the University of L’Aquila,
Italy. His research focuses on software engi-
neering, empirical software engineering, privacy
and security of mobile apps, mining of software
repositories, program analysis. Contact him at
gianluca.scoccia@univaq.it.

Ivano Malavolta is assistant professor – Vrije
Universiteit Amsterdam, The Netherlands, De-
partment of Computer Science. His research fo-
cuses on data-driven software engineering, with
a special emphasis on mobile software develop-
ment, software architecture, model-driven engi-
neering, robotics software. He is applying em-
pirical methods to assess practices and trends
in the field of software engineering. He au-
thored several scientific articles in international
journals and peer-reviewed international confer-

ences proceedings. He is program committee member and reviewer of
international conferences and journals in the software engineering field.
He received a PhD in computer science from the University of L’Aquila
in 2012. He is a member of ACM, IEEE, VERSEN, Amsterdam Young
Academy, and Amsterdam Data Science. More information is available
at http://www.ivanomalavolta.com.

Marco Autili is an associate professor – Uni-
versity of L’Aquila’s Department of Information
Engineering, Computer Science, and Mathe-
matics. His research focuses on automated
synthesis for composing distributed systems,
context-oriented mobile software programming,
resource-oriented analysis of mobile apps, for-
mal specification and checking of temporal prop-
erties. Autili received a PhD in computer science
from the University of L’Aquila. Contact him at
marco.autili@univaq.it.

http://www.ivanomalavolta.com

0098-5589 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2941936, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, MONTH 20XX 21

Paola Inverardi is a full professor – University of
L’Aquila’s Department of Information Engineer-
ing, Computer Science, and Mathematics. Her
research focuses on software specification and
verification of concurrent and distributed sys-
tems, deduction systems, and software archi-
tectures. Inverardi received an honorary Ph.D.
in computer science from Mälardalen University.
Contact her at paola.inverardi@univaq.it.

Amleto Di Salle is research fellow – Univer-
sity of L’Aquila’s Department of Information En-
gineering, Computer Science, and Mathemat-
ics. His research focuses on application of
software engineering methods and (practical)
formalisms to the modeling, verification, anal-
ysis and automatic synthesis of component-
based and service-oriented distributed systems.
Di Salle received a PhD in computer science
from the University of L’Aquila. More informa-
tion is available at http://people.disim.univaq.it/

∼amletodisalle/.

http://people.disim.univaq.it/~amletodisalle/
http://people.disim.univaq.it/~amletodisalle/

